論文の概要: Deep Learning Based Image Retrieval in the JPEG Compressed Domain
- arxiv url: http://arxiv.org/abs/2107.03648v1
- Date: Thu, 8 Jul 2021 07:30:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-09 13:26:56.026866
- Title: Deep Learning Based Image Retrieval in the JPEG Compressed Domain
- Title(参考訳): JPEG圧縮領域におけるディープラーニングに基づく画像検索
- Authors: Shrikant Temburwar, Bulla Rajesh and Mohammed Javed
- Abstract要約: 本稿では,DCT係数を入力とし,JPEG圧縮領域のグローバルおよびローカルな特徴を直接抽出し,正確な画像検索を行う画像検索統合モデルを提案する。
提案手法は,RGB特徴を平均精度に言及した入力として用いた現在のDELGモデルとよく似ている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Content-based image retrieval (CBIR) systems on pixel domain use low-level
features, such as colour, texture and shape, to retrieve images. In this
context, two types of image representations i.e. local and global image
features have been studied in the literature. Extracting these features from
pixel images and comparing them with images from the database is very
time-consuming. Therefore, in recent years, there has been some effort to
accomplish image analysis directly in the compressed domain with lesser
computations. Furthermore, most of the images in our daily transactions are
stored in the JPEG compressed format. Therefore, it would be ideal if we could
retrieve features directly from the partially decoded or compressed data and
use them for retrieval. Here, we propose a unified model for image retrieval
which takes DCT coefficients as input and efficiently extracts global and local
features directly in the JPEG compressed domain for accurate image retrieval.
The experimental findings indicate that our proposed model performed similarly
to the current DELG model which takes RGB features as an input with reference
to mean average precision while having a faster training and retrieval speed.
- Abstract(参考訳): 画素領域上のコンテンツベース画像検索(CBIR)システムは、色、テクスチャ、形状などの低レベル特徴を用いて画像を取得する。
この文脈では、2種類の画像表現がある。
ローカル画像とグローバル画像の特徴は文献で研究されている。
これらの特徴をピクセル画像から抽出し、データベースの画像と比較するのは非常に時間がかかる。
そのため,近年は少ない計算量で直接圧縮領域で画像解析を行うことが試みられている。
さらに、日々のトランザクションのほとんどのイメージはJPEG圧縮フォーマットに格納されます。
したがって、部分的にデコードまたは圧縮されたデータから直接機能を検索し、それらを検索に使用できれば理想的です。
本稿では,DCT係数を入力とし,JPEG圧縮領域のグローバルおよびローカルな特徴を直接抽出し,正確な画像検索を行う画像検索統合モデルを提案する。
実験結果から,提案手法は従来のDLGモデルとよく似ており,RGBの特徴を学習速度と検索速度の速い平均精度の入力として用いていることがわかった。
関連論文リスト
- Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
本稿では,コンテンツ適応型画像表現であるImage-GSを提案する。
異方性2Dガウスアンをベースとして、Image-GSは高いメモリ効率を示し、高速なランダムアクセスをサポートし、自然なレベルのディテールスタックを提供する。
画像-GSの一般的な効率性と忠実性は、最近のニューラルイメージ表現と業界標準テクスチャ圧縮機に対して検証される。
この研究は、機械認識、アセットストリーミング、コンテンツ生成など、適応的な品質とリソース制御を必要とする新しいアプリケーションを開発するための洞察を与えてくれることを願っている。
論文 参考訳(メタデータ) (2024-07-02T00:45:21Z) - Hyperspectral Image Compression Using Sampling and Implicit Neural
Representations [2.3931689873603603]
ハイパースペクトル画像は、シーンの画像中の画素の電磁スペクトルを記録する。
これらの画像の撮影コストが低下する中で、ハイパースペクトル画像の保存、送信、解析のための効率的な技術を開発する必要がある。
本稿では,暗黙的ニューラル表現を用いたハイパースペクトル画像圧縮法を提案する。
論文 参考訳(メタデータ) (2023-12-04T01:10:04Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
生画像は、線形性や微細な量子化レベルなど、sRGB画像に対して明確な利点がある。
ストレージの要求が大きいため、一般ユーザからは広く採用されていない。
本稿では,メタデータとして,潜在空間におけるコンパクトな表現を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-21T06:59:07Z) - Raw Image Reconstruction with Learned Compact Metadata [61.62454853089346]
本稿では,メタデータとしての潜在空間におけるコンパクトな表現をエンドツーエンドで学習するための新しいフレームワークを提案する。
提案する生画像圧縮方式は,グローバルな視点から重要な画像領域に適応的により多くのビットを割り当てることができることを示す。
論文 参考訳(メタデータ) (2023-02-25T05:29:45Z) - T2CI-GAN: Text to Compressed Image generation using Generative
Adversarial Network [9.657133242509671]
実際には、ほとんどの視覚データは、圧縮された表現形式で処理され、送信される。
提案手法は,Deep Convolutional GAN(DCGAN)を用いて,圧縮表現形式で直接視覚データを生成しようとするものである。
最初のモデルはJPEG圧縮DCT画像(圧縮領域)で直接訓練され、テキスト記述から圧縮画像を生成する。
第2のモデルはRGB画像(ピクセル領域)でトレーニングされ、テキスト記述からJPEG圧縮DCT表現を生成する。
論文 参考訳(メタデータ) (2022-10-01T09:26:25Z) - Learning-based Compression for Material and Texture Recognition [23.668803886355683]
本稿では,圧縮領域表現を用いて,圧縮領域内で直接視覚処理やコンピュータビジョンタスクを行う学習ベース圧縮方式について述べる。
学習ベースのJPEG-AIフレームワークを採用し、バリイングビットレートで圧縮ドメインの潜入表現を使用して材料およびテクスチャ認識を行います。
また, 圧縮領域分類は, より小さな縮小複雑度分類モデルを用いてTop-1とTop-5の精度で競合性能が得られることを示した。
論文 参考訳(メタデータ) (2021-04-16T23:16:26Z) - CNNs for JPEGs: A Study in Computational Cost [49.97673761305336]
畳み込みニューラルネットワーク(CNN)は過去10年間で驚くべき進歩を遂げてきた。
CNNはRGBピクセルから直接データの堅牢な表現を学習することができる。
近年,圧縮領域から直接学習できる深層学習手法が注目されている。
論文 参考訳(メタデータ) (2020-12-26T15:00:10Z) - Using Text to Teach Image Retrieval [47.72498265721957]
ニューラルネットワークを用いて学習した画像の特徴空間をグラフとして表現するために,画像多様体の概念に基づいて構築する。
我々は、幾何学的に整列したテキストで多様体のサンプルを増補し、大量の文を使って画像について教える。
実験結果から, 結合埋め込み多様体は頑健な表現であり, 画像検索を行うためのより良い基礎となることが示唆された。
論文 参考訳(メタデータ) (2020-11-19T16:09:14Z) - Object Detection in the DCT Domain: is Luminance the Solution? [4.361526134899725]
本稿では,画像の圧縮表現を利用して,制約された資源条件で使用可能な物体検出を行う。
これにより、標準のRGBアーキテクチャと比較して1.7ドルの速度が向上し、検出性能は5.5%低下した。
論文 参考訳(メタデータ) (2020-06-10T08:43:40Z) - Discernible Image Compression [124.08063151879173]
本稿では、外観と知覚の整合性の両方を追求し、圧縮画像を作成することを目的とする。
エンコーダ・デコーダ・フレームワークに基づいて,事前学習したCNNを用いて,オリジナル画像と圧縮画像の特徴を抽出する。
ベンチマーク実験により,提案手法を用いて圧縮した画像は,その後の視覚認識・検出モデルでもよく認識できることが示された。
論文 参考訳(メタデータ) (2020-02-17T07:35:08Z) - Image retrieval approach based on local texture information derived from
predefined patterns and spatial domain information [14.620086904601472]
提案手法の性能は,Simplicityデータベース上での精度とリコールの観点から評価する。
比較の結果,提案手法は既知の多くの手法よりも精度が高いことがわかった。
論文 参考訳(メタデータ) (2019-12-30T16:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。