論文の概要: Complete Scanning Application Using OpenCv
- arxiv url: http://arxiv.org/abs/2107.03700v1
- Date: Thu, 8 Jul 2021 09:21:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-09 19:09:46.461641
- Title: Complete Scanning Application Using OpenCv
- Title(参考訳): OpenCvによる全スキャンアプリケーション
- Authors: Ayushe Gangal, Peeyush Kumar and Sunita Kumari
- Abstract要約: 我々は,コンピュータビジョンアプリケーションのオープンソースであるNumPyライブラリとOpenCvライブラリを統合した。
その他の機能としては、収穫、回転、保存などがある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the following paper, we have combined the various basic functionalities
provided by the NumPy library and OpenCv library, which is an open source for
Computer Vision applications, like conversion of colored images to grayscale,
calculating threshold, finding contours and using those contour points to take
perspective transform of the image inputted by the user, using Python version
3.7. Additional features include cropping, rotating and saving as well. All
these functions and features, when implemented step by step, results in a
complete scanning application. The applied procedure involves the following
steps: Finding contours, applying Perspective transform and brightening the
image, Adaptive Thresholding and applying filters for noise cancellation, and
Rotation features and perspective transform for a special cropping algorithm.
The described technique is implemented on various samples.
- Abstract(参考訳): 本稿では,カラー画像からグレースケールへの変換,しきい値の算出,輪郭の抽出,輪郭点の利用など,コンピュータビジョンアプリケーションのためのオープンソースであるnumpyライブラリとopencvライブラリが提供する様々な基本機能を組み合わせて,pythonバージョン3.7を用いて,ユーザが入力した画像の視点変換を行う。
その他の機能としては、切り刻み、回転、保存などがある。
これらの機能と機能は、ステップバイステップで実装されると、完全なスキャニングアプリケーションになる。
適用手順は、輪郭探索、パースペクティブ変換の適用、画像の鮮明化、ノイズキャンセリングのための適応的閾値保持およびフィルタの適用、特別な収穫アルゴリズムのための回転特徴とパースペクティブ変換を含む。
この技術は様々なサンプルに実装されている。
関連論文リスト
- FaVoR: Features via Voxel Rendering for Camera Relocalization [23.7893950095252]
カメラ再ローカライズ手法は、高密度画像アライメントから、クエリ画像からの直接カメラポーズ回帰まで様々である。
本稿では,世界規模で疎密だが局所的に密集した2次元特徴の3次元表現を活用する新しい手法を提案する。
一連のフレーム上でのランドマークの追跡と三角測量により、追跡中に観察された画像パッチ記述子をレンダリングするために最適化されたスパースボクセルマップを構築する。
論文 参考訳(メタデータ) (2024-09-11T18:58:16Z) - Anyview: Generalizable Indoor 3D Object Detection with Variable Frames [63.51422844333147]
我々は,AnyViewという新しい3D検出フレームワークを実用化するために提案する。
本手法は, 単純かつクリーンなアーキテクチャを用いて, 高い一般化性と高い検出精度を実現する。
論文 参考訳(メタデータ) (2023-10-09T02:15:45Z) - Learning-Based Dimensionality Reduction for Computing Compact and
Effective Local Feature Descriptors [101.62384271200169]
特徴の形でのイメージパッチの独特な表現は多くのコンピュータビジョンとロボティクスのタスクの重要な構成要素である。
マルチ層パーセプトロン(MLP)を用いて,低次元ながら高品質な記述子を抽出する。
視覚的ローカライゼーション、パッチ検証、画像マッチング、検索など、さまざまなアプリケーションについて検討する。
論文 参考訳(メタデータ) (2022-09-27T17:59:04Z) - VoGE: A Differentiable Volume Renderer using Gaussian Ellipsoids for
Analysis-by-Synthesis [62.47221232706105]
本稿では,ガウス再構成カーネルをボリュームプリミティブとして利用するVoGEを提案する。
本稿では,VoGEを用いて効率よくレンダリングを行うために,体積密度集約と粗大な描画戦略に関する近似クローズフォーム解を提案する。
VoGEは、オブジェクトポーズ推定、形状/テクスチャフィッティング、推論など、様々な視覚タスクに適用された場合、SoTAより優れている。
論文 参考訳(メタデータ) (2022-05-30T19:52:11Z) - Image preprocessing and modified adaptive thresholding for improving OCR [0.0]
本稿では,テキスト内の画素強度を最大化し,それに応じて画像のしきい値を設定する手法を提案する。
得られた結果から,OCRの画像処理分野において,このアルゴリズムを効率的に適用できることが分かる。
論文 参考訳(メタデータ) (2021-11-28T08:13:20Z) - Computer-aided Interpretable Features for Leaf Image Classification [0.0]
52種類の植物を分類するための計算効率の良い特徴を紹介する。
長さ、幅、面積、テクスチャの相関、単調性、発癌性は少ない。
その結果,教師付き学習環境と教師なし学習環境の両方において,興味のクラスを識別するのに十分な特徴があることが示唆された。
論文 参考訳(メタデータ) (2021-06-15T12:11:10Z) - Compositional Sketch Search [91.84489055347585]
フリーハンドスケッチを用いて画像コレクションを検索するアルゴリズムを提案する。
シーン構成全体を特定するための簡潔で直感的な表現として描画を利用する。
論文 参考訳(メタデータ) (2021-06-15T09:38:09Z) - Stable View Synthesis [100.86844680362196]
安定ビュー合成(SVS)について紹介する。
SVSは、自由に分散された視点からシーンを描写するソースイメージのセットを与えられた場合、シーンの新たなビューを合成する。
SVSは3つの異なる実世界のデータセットに対して定量的かつ質的に、最先端のビュー合成手法より優れている。
論文 参考訳(メタデータ) (2020-11-14T07:24:43Z) - A survey on Kornia: an Open Source Differentiable Computer Vision
Library for PyTorch [0.0]
Korniaは、汎用的なコンピュータビジョン問題を解決することを目的とした、さまざまなルーチンとモジュールのセットに基づいて構築された、オープンソースのコンピュータビジョンライブラリである。
パッケージはPyTorchをメインバックエンドとして使用しており、効率だけでなく、逆自動微分エンジンを利用して複雑な関数の勾配を定義し、計算する。
論文 参考訳(メタデータ) (2020-09-21T08:48:28Z) - Open-Edit: Open-Domain Image Manipulation with Open-Vocabulary
Instructions [66.82547612097194]
そこで我々は,オープンドメイン画像操作のための新しいアルゴリズムOpen-Editを提案する。
本手法は、一般的な画像キャプチャーデータセット上で事前訓練された、統合されたビジュアル・セマンティックな埋め込み空間を利用する。
オープンドメイン画像の様々なシナリオに対して,オープンボキャブラリ色,テクスチャ,高レベル属性の操作に有望な結果を示す。
論文 参考訳(メタデータ) (2020-08-04T14:15:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。