Symmetric Finite-Time Preparation of Cluster States via Quantum Pumps
- URL: http://arxiv.org/abs/2107.04019v2
- Date: Mon, 22 Aug 2022 23:36:49 GMT
- Title: Symmetric Finite-Time Preparation of Cluster States via Quantum Pumps
- Authors: Nathanan Tantivasadakarn, Ashvin Vishwanath
- Abstract summary: We show that it is possible to prepare cluster-like states in finite time without breaking the symmetry protecting the resource state.
We show that even if unwanted symmetric perturbations are present in the driving Hamiltonian, projective measurements in the bulk along with feedforward correction is sufficient to recover a cluster-like state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has recently been established that cluster-like states -- states that are
in the same symmetry-protected topological phase as the cluster state --
provide a family of resource states that can be utilized for Measurement-Based
Quantum Computation. In this work, we ask whether it is possible to prepare
cluster-like states in finite time without breaking the symmetry protecting the
resource state. Such a symmetry-preserving protocol would benefit from
topological protection to errors in the preparation. We answer this question in
the positive by providing a Hamiltonian in one higher dimension whose
finite-time evolution is a unitary that acts trivially in the bulk, but pumps
the desired cluster state to the boundary. Examples are given for both the 1D
cluster state protected by a global symmetry, and various 2D cluster states
protected by subsystem symmetries. We show that even if unwanted symmetric
perturbations are present in the driving Hamiltonian, projective measurements
in the bulk along with feedforward correction is sufficient to recover a
cluster-like state.
Related papers
- Instability of steady-state mixed-state symmetry-protected topological order to strong-to-weak spontaneous symmetry breaking [14.693424479293737]
We investigate whether open quantum systems hosting mixed-state symmetry-protected topological states as steady states retain this property under symmetric perturbations.
We find that typical symmetric perturbations cause strong-to-weak spontaneous symmetry breaking at arbitrarily small perturbations, destabilize the steady-state mixed-state symmetry-protected topological order.
We construct a quantum channel which replicates the essential physics of the Lindbladian and can be efficiently simulated using only Clifford gates, Pauli measurements, and feedback.
arXiv Detail & Related papers (2024-10-16T18:00:00Z) - Diagnosing Strong-to-Weak Symmetry Breaking via Wightman Correlators [20.572965801171225]
Recent developments have extended the discussion of symmetry and its breaking to mixed states.
We propose the Wightman correlator as an alternative diagnostic tool.
arXiv Detail & Related papers (2024-10-12T02:04:40Z) - Sample-Optimal Quantum State Tomography for Structured Quantum States in One Dimension [25.333797381352973]
We study whether the number of state copies can saturate the information theoretic bound (i.e., $O(n)$) using physical quantum measurements.
We propose a projected gradient descent (PGD) algorithm to solve the constrained least-squares problem and show that it can efficiently find an estimate with bounded recovery error.
arXiv Detail & Related papers (2024-10-03T15:26:26Z) - Cavity Control of Topological Qubits: Fusion Rule, Anyon Braiding and Majorana-Schrödinger Cat States [39.58317527488534]
We investigate the impact of introducing a local cavity within the center of a topological chain.
This cavity induces a scissor-like effect that bisects the chain, liberating Majorana zero modes (MZMs) within the bulk.
By leveraging the symmetry properties of fermion modes within a two-site cavity, we propose a novel method for generating MZM-polariton Schr"odinger cat states.
arXiv Detail & Related papers (2024-09-06T18:00:00Z) - Hierarchy of emergent cluster states by measurement from symmetry-protected-topological states with large symmetry to subsystem cat state [0.0]
We propose it measurement-producing hierarchy emerging among correlated states by sequential subsystem projective measurements.
We also verify the symmetry-reduction hierarchy by sequential subsystem projective measurements applied to large systems and large symmetric cluster SPT states.
arXiv Detail & Related papers (2024-05-04T07:17:53Z) - Exploring Supersymmetry: Interchangeability Between Jaynes-Cummings and Anti-Jaynes-Cummings Models [39.58317527488534]
The supersymmetric connection that exists between the Jaynes-Cummings (JC) and anti-Jaynes Cummings (AJC) models in quantum optics is unraveled.
A new method is proposed to obtain the temporal evolution of observables in the AJC model using supersymmetric techniques.
arXiv Detail & Related papers (2024-04-18T18:00:34Z) - Non-invertible symmetry-protected topological order in a group-based cluster state [0.5461938536945721]
We introduce a one-dimensional stabilizer Hamiltonian composed of group-based Pauli operators whose ground state is a $Gtimes textRep(G)$-symmetric state.
We show that this state lies in a symmetry-protected topological (SPT) phase protected by $Gtimes textRep(G)$ symmetry, distinct from the symmetric product state by a duality argument.
arXiv Detail & Related papers (2023-12-14T18:56:20Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Simulating scalar field theories on quantum computers with limited
resources [62.997667081978825]
We present a quantum algorithm for implementing $phi4$ lattice scalar field theory on qubit computers.
The algorithm allows efficient $phi4$ state preparation for a large range of input parameters in both the normal and broken symmetry phases.
arXiv Detail & Related papers (2022-10-14T17:28:15Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Fate of symmetry protected coherence in open quantum system [0.7132368785057315]
We find that a pure state in the symmetry protected subspace will decohere even though both the system Hamiltonian and system-environment interaction respect the same anti-unitary symmetry.
Our results could help to explore the possible experimental realization of stable time-reversal symmetric states.
arXiv Detail & Related papers (2021-02-21T06:24:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.