Instability of steady-state mixed-state symmetry-protected topological order to strong-to-weak spontaneous symmetry breaking
- URL: http://arxiv.org/abs/2410.12900v1
- Date: Wed, 16 Oct 2024 18:00:00 GMT
- Title: Instability of steady-state mixed-state symmetry-protected topological order to strong-to-weak spontaneous symmetry breaking
- Authors: Jeet Shah, Christopher Fechisin, Yu-Xin Wang, Joseph T. Iosue, James D. Watson, Yan-Qi Wang, Brayden Ware, Alexey V. Gorshkov, Cheng-Ju Lin,
- Abstract summary: We investigate whether open quantum systems hosting mixed-state symmetry-protected topological states as steady states retain this property under symmetric perturbations.
We find that typical symmetric perturbations cause strong-to-weak spontaneous symmetry breaking at arbitrarily small perturbations, destabilize the steady-state mixed-state symmetry-protected topological order.
We construct a quantum channel which replicates the essential physics of the Lindbladian and can be efficiently simulated using only Clifford gates, Pauli measurements, and feedback.
- Score: 14.693424479293737
- License:
- Abstract: Recent experimental progress in controlling open quantum systems enables the pursuit of mixed-state nonequilibrium quantum phases. We investigate whether open quantum systems hosting mixed-state symmetry-protected topological states as steady states retain this property under symmetric perturbations. Focusing on the decohered cluster state -- a mixed-state symmetry-protected topological state protected by a combined strong and weak symmetry -- we construct a parent Lindbladian that hosts it as a steady state. This Lindbladian can be mapped onto exactly solvable reaction-diffusion dynamics, even in the presence of certain perturbations, allowing us to solve the parent Lindbladian in detail and reveal previously-unknown steady states. Using both analytical and numerical methods, we find that typical symmetric perturbations cause strong-to-weak spontaneous symmetry breaking at arbitrarily small perturbations, destabilize the steady-state mixed-state symmetry-protected topological order. However, when perturbations introduce only weak symmetry defects, the steady-state mixed-state symmetry-protected topological order remains stable. Additionally, we construct a quantum channel which replicates the essential physics of the Lindbladian and can be efficiently simulated using only Clifford gates, Pauli measurements, and feedback.
Related papers
- Long-range entanglement from spontaneous non-onsite symmetry breaking [3.3754780158324564]
We show a frustration-free lattice model exhibiting SSB of a non-onsite symmetry.
We analytically prove the two-fold ground-state degeneracy and the existence of a finite energy gap.
Our work reveals the exotic features of SSB of non-onsite symmetries, which may lie beyond the framework of topological holography.
arXiv Detail & Related papers (2024-11-07T18:59:51Z) - Diagnosing Strong-to-Weak Symmetry Breaking via Wightman Correlators [20.572965801171225]
Recent developments have extended the discussion of symmetry and its breaking to mixed states.
We propose the Wightman correlator as an alternative diagnostic tool.
arXiv Detail & Related papers (2024-10-12T02:04:40Z) - Asymmetry Amplification by a Nonadiabatic Passage through a Critical Point [0.0]
We propose and solve a minimal model of dynamic passage through a quantum second order phase transition in the presence of weak symmetry breaking interactions and no dissipation.
The evolution eventually leads to a highly asymmetric state, no matter how weak the symmetry breaking term is.
This suggests a potential mechanism for strong asymmetry in the production of particles with almost identical characteristics.
arXiv Detail & Related papers (2024-08-28T16:06:56Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Multiple crossing during dynamical symmetry restoration and implications for the quantum Mpemba effect [0.0]
We show how, by tuning the initial state, the symmetry dynamics in free fermionic systems can display much richer behaviour than seen previously.
In particular, for certain classes of initial states, including ground states of free fermionic models with long-range couplings, the entanglement asymmetry can exhibit multiple crossings.
arXiv Detail & Related papers (2024-05-07T15:57:45Z) - Entanglement entropy distinguishes PT-symmetry and topological phases in
a class of non-unitary quantum walks [0.0]
We calculate the hybrid entanglement entropy between coin and walker degrees of freedom in a non-unitary quantum walk.
An analysis at long times reveals that the quantum walk can indefinitely sustain hybrid entanglement in the unbroken symmetry phase even when gain and loss mechanisms are present.
arXiv Detail & Related papers (2022-12-14T19:01:15Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Fate of symmetry protected coherence in open quantum system [0.7132368785057315]
We find that a pure state in the symmetry protected subspace will decohere even though both the system Hamiltonian and system-environment interaction respect the same anti-unitary symmetry.
Our results could help to explore the possible experimental realization of stable time-reversal symmetric states.
arXiv Detail & Related papers (2021-02-21T06:24:28Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Spontaneous and explicit parity-time-symmetry breaking in drift wave
instabilities [84.14613391584454]
We show that spontaneous PT-symmetry breaking leads to the Ion Temperature Gradient (ITG) instability of drift waves, and the collisional instability is the result of explicit PT-symmetry breaking.
It is also found that gradients of ion temperature and density can destabilize the ion cyclotron waves when PT symmetry is explicitly broken by a finite collisionality.
arXiv Detail & Related papers (2020-10-19T15:59:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.