論文の概要: Personalized Federated Learning over non-IID Data for Indoor
Localization
- arxiv url: http://arxiv.org/abs/2107.04189v1
- Date: Fri, 9 Jul 2021 03:31:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-13 02:10:53.625182
- Title: Personalized Federated Learning over non-IID Data for Indoor
Localization
- Title(参考訳): 室内局所化のための非IIDデータを用いた個人化フェデレーション学習
- Authors: Peng Wu, Tales Imbiriba, Junha Park, Sunwoo Kim, Pau Closas
- Abstract要約: 我々は、最近のフェデレートラーニングスキームを用いて、パーソナライズされたモデルのセットをトレーニングする。
本稿では、最近のFLスキームを用いて、ベイズ規則により最適に融合されたパーソナライズされたモデルの集合を訓練する。
- 参考スコア(独自算出の注目度): 17.03722514121803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Localization and tracking of objects using data-driven methods is a popular
topic due to the complexity in characterizing the physics of wireless channel
propagation models. In these modeling approaches, data needs to be gathered to
accurately train models, at the same time that user's privacy is maintained. An
appealing scheme to cooperatively achieve these goals is known as Federated
Learning (FL). A challenge in FL schemes is the presence of non-independent and
identically distributed (non-IID) data, caused by unevenly exploration of
different areas. In this paper, we consider the use of recent FL schemes to
train a set of personalized models that are then optimally fused through
Bayesian rules, which makes it appropriate in the context of indoor
localization.
- Abstract(参考訳): データ駆動方式によるオブジェクトの局在化と追跡は,無線チャネル伝搬モデルの物理特性を特徴付ける複雑さから,一般的な話題である。
これらのモデリングアプローチでは、ユーザのプライバシが維持されると同時に、モデルを正確にトレーニングするためにデータを収集する必要がある。
これらの目標を協調的に達成するための魅力的なスキームは、連合学習(federated learning:fl)と呼ばれる。
FLスキームの課題は、異なる領域を不均一に探索することに起因する非独立で同一の(非IID)データの存在である。
本稿では,近年のflスキームを用いて,ベイズ則によって最適に融合されるパーソナライズされたモデルの集合を学習し,屋内ローカライゼーションの文脈において適切であることを示す。
関連論文リスト
- Survey of Federated Learning Models for Spatial-Temporal Mobility
Applications [7.857209033280136]
フェデレートラーニング(FL)は、空間時間モデルを訓練するための理想的な候補として機能する。
既存の時空間モデルから分散学習への移行には,ユニークな課題がある。
論文 参考訳(メタデータ) (2023-05-09T08:26:48Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
本稿では,同じフェデレーションネットワークにおけるデータの統計的不均一性の問題に焦点をあてる。
FedAvg、FedProx、Federated Curvature(FedCurv)など、いくつかのフェデレートラーニングアルゴリズムがすでに提案されている。
この研究の副産物として、FLコミュニティからのさらなる比較を容易にするために使用したデータセットの非IIDバージョンをリリースします。
論文 参考訳(メタデータ) (2023-03-31T10:13:01Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Federated Learning with Privacy-Preserving Ensemble Attention
Distillation [63.39442596910485]
Federated Learning(FL)は、多くのローカルノードがトレーニングデータを分散化しながら、中央モデルを協調的にトレーニングする機械学習パラダイムである。
本稿では,未ラベル公開データを利用した一方向オフライン知識蒸留のためのプライバシー保護FLフレームワークを提案する。
我々の技術は、既存のFLアプローチのような分散的で異質なローカルデータを使用するが、より重要なのは、プライバシー漏洩のリスクを著しく低減することです。
論文 参考訳(メタデータ) (2022-10-16T06:44:46Z) - Towards Understanding and Mitigating Dimensional Collapse in
Heterogeneous Federated Learning [114.32726625370258]
フェデレートラーニングは、プライバシを考慮したデータ共有を必要とせずに、さまざまなクライアントでモデルをトレーニングすることを目的としている。
本研究では,データの不均一性がグローバル集約モデルの表現に与える影響について検討する。
フェデレーション学習における次元的崩壊を効果的に緩和する新しい手法である sc FedDecorr を提案する。
論文 参考訳(メタデータ) (2022-10-01T09:04:17Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
フェデレートラーニング(FL)は、データプライバシと送信問題を克服する有望な方法として最近登場した。
FLでは、異なるデバイスやセンサーから収集されたデータセットを使用して、各学習を集中型モデル(サーバ)と共有するローカルモデル(クライアント)をトレーニングする。
本稿では,PC-FedAvg(Personalized FedAvg, PC-FedAvg)を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:57:11Z) - Adapt to Adaptation: Learning Personalization for Cross-Silo Federated
Learning [6.0088002781256185]
従来のフェデレーション学習は、分散データによるクライアントのフェデレーションのためのグローバルモデルをトレーニングすることを目的としている。
非IIDデータセット間の分散シフトは、データヘテロジニティとしても知られ、この1つのグローバルモデルに適合するソリューションにしばしば挑戦する。
我々は、各クライアントが他のクライアントのモデルからどれだけの恩恵を受けることができるかを適応的に学習するパーソナライズされたクロスサイロFLフレームワークであるAPPLEを提案する。
論文 参考訳(メタデータ) (2021-10-15T22:23:14Z) - Federated Learning from Small Datasets [48.879172201462445]
フェデレーション学習は、複数のパーティが、ローカルデータを共有せずに、共同モデルを共同でトレーニングすることを可能にする。
そこで本研究では,局所モデルの置換とモデルアグリゲーションを連動させる新しい手法を提案する。
置換は、各ローカルモデルをローカルデータセットのデージーチェーンに公開することで、データスパースドメインでのより効率的なトレーニングを実現する。
論文 参考訳(メタデータ) (2021-10-07T13:49:23Z) - Privacy-Preserving Self-Taught Federated Learning for Heterogeneous Data [6.545317180430584]
フェデレーテッド・ラーニング(FL)は、各パーティのローカルデータを用いて、データを他人に公開することなく、ディープラーニングモデルのジョイントトレーニングを可能にするために提案された。
本研究では,前述の問題に対処するために,自己学習型フェデレーション学習と呼ばれるFL手法を提案する。
この方法では、潜在変数だけがモデルトレーニングのために他の当事者に送信され、プライバシはアクティベーション、重み、バイアスのデータとパラメータをローカルに保存することで保持される。
論文 参考訳(メタデータ) (2021-02-11T08:07:51Z) - FedH2L: Federated Learning with Model and Statistical Heterogeneity [75.61234545520611]
フェデレートラーニング(FL)は、分散参加者が個々のデータのプライバシを犠牲にすることなく、強力なグローバルモデルを集合的に学習することを可能にする。
我々はFedH2Lを導入し、これはモデルアーキテクチャに非依存であり、参加者間で異なるデータ分散に対して堅牢である。
パラメータや勾配を共有するアプローチとは対照的に、FedH2Lは相互蒸留に依存し、参加者間で共有シードセットの後方のみを分散的に交換する。
論文 参考訳(メタデータ) (2021-01-27T10:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。