論文の概要: A review on different techniques used to combat the non-IID and
heterogeneous nature of data in FL
- arxiv url: http://arxiv.org/abs/2401.00809v1
- Date: Mon, 1 Jan 2024 16:34:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 15:45:16.744016
- Title: A review on different techniques used to combat the non-IID and
heterogeneous nature of data in FL
- Title(参考訳): flにおけるデータの非iid・不均質性と戦うための各種手法のレビュー
- Authors: Venkataraman Natarajan Iyer
- Abstract要約: Federated Learning(FL)は、複数のエッジデバイス間で協調的なモデルトレーニングを可能にする機械学習アプローチである。
FLの重要性は、医療や金融などの業界で特に顕著であり、データのプライバシが最重要視されている。
この報告は、非IIDおよび異種データから生じる問題を掘り下げ、これらの課題に対処するために設計された現在のアルゴリズムを探求する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a machine-learning approach enabling collaborative
model training across multiple decentralized edge devices that hold local data
samples, all without exchanging these samples. This collaborative process
occurs under the supervision of a central server orchestrating the training or
via a peer-to-peer network. The significance of FL is particularly pronounced
in industries such as healthcare and finance, where data privacy holds
paramount importance. However, training a model under the Federated learning
setting brings forth several challenges, with one of the most prominent being
the heterogeneity of data distribution among the edge devices. The data is
typically non-independently and non-identically distributed (non-IID), thereby
presenting challenges to model convergence. This report delves into the issues
arising from non-IID and heterogeneous data and explores current algorithms
designed to address these challenges.
- Abstract(参考訳): Federated Learning(FL)は、ローカルデータサンプルを保持する複数の分散エッジデバイス間で協調的なモデルトレーニングを可能にする機械学習アプローチである。
この協調プロセスは、トレーニングを編成する中央サーバーまたはピアツーピアネットワークを介して行われる。
flの重要性は、データプライバシが最優先事項であるヘルスケアやファイナンスといった業界で特に顕著である。
しかしながら、フェデレーション学習環境下でモデルをトレーニングすることは、エッジデバイス間のデータ分散の多様性を特徴とする、いくつかの課題を生じさせる。
データは一般に非独立的かつ非識別的に分散され(非iid)、モデル収束の課題を呈する。
この報告は、非IIDおよび異種データから生じる問題を掘り下げ、これらの課題に対処するために設計された現在のアルゴリズムを探求する。
関連論文リスト
- Non-IID data in Federated Learning: A Systematic Review with Taxonomy, Metrics, Methods, Frameworks and Future Directions [2.9434966603161072]
この体系的なレビューは、非IIDデータ、パーティションプロトコル、メトリクスの詳細な分類を提供することによってギャップを埋めることを目的としている。
非IIDデータに対処するための一般的なソリューションと、異種データを用いたフェデレートラーニングで使用される標準化されたフレームワークについて述べる。
論文 参考訳(メタデータ) (2024-11-19T09:53:28Z) - Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
スマートフォンやラップトップを含むモバイルデバイスは、分散化された異種データを生成する。
フェデレートラーニング(FL)は、データ共有のない分散デバイス間でグローバルモデルの協調トレーニングを可能にすることで、有望な代替手段を提供する。
本稿では、FLにおけるデータ依存的不均一性に着目し、局所的に訓練されたモデルから抽出された平均潜在表現を活用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-10T04:03:09Z) - FedMAC: Tackling Partial-Modality Missing in Federated Learning with Cross-Modal Aggregation and Contrastive Regularization [11.954904313477176]
Federated Learning(FL)は、分散データソースを使用して機械学習モデルをトレーニングする手法である。
本研究ではFedMACという新しいフレームワークを提案し,FLに欠落した部分モダリティ条件下でのマルチモダリティの解消を図った。
論文 参考訳(メタデータ) (2024-10-04T01:24:02Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated Learning(FL)は、独立した学習者がデータをプライベートに処理する分散機械学習アプローチである。
現在普及しているデータ分割技術について検討し、その主な欠点を可視化する。
エントロピーと対称性を利用して「最も困難」かつ制御可能なデータ分布を構築する手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T18:39:08Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
本稿では,同じフェデレーションネットワークにおけるデータの統計的不均一性の問題に焦点をあてる。
FedAvg、FedProx、Federated Curvature(FedCurv)など、いくつかのフェデレートラーニングアルゴリズムがすでに提案されている。
この研究の副産物として、FLコミュニティからのさらなる比較を容易にするために使用したデータセットの非IIDバージョンをリリースします。
論文 参考訳(メタデータ) (2023-03-31T10:13:01Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
我々は、現在のセットアップにおけるデータ不均一性の問題が必ずしも問題であるだけでなく、FL参加者にとって有益であることを示す。
私たちの観察は直感的である。
私たちのコードはhttps://github.com/MMorafah/FL-SC-NIIDで利用可能です。
論文 参考訳(メタデータ) (2022-09-30T17:15:19Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
非IIDデータの処理は、フェデレーション学習における最も難しい問題の1つである。
本稿では, フェデレート学習における非IIDデータとロングテールデータの結合問題について検討し, フェデレート・アンサンブル蒸留と不均衡(FEDIC)という対応ソリューションを提案する。
FEDICはモデルアンサンブルを使用して、非IIDデータでトレーニングされたモデルの多様性を活用する。
論文 参考訳(メタデータ) (2022-04-30T06:17:36Z) - Non-IID data and Continual Learning processes in Federated Learning: A
long road ahead [58.720142291102135]
フェデレートラーニング(Federated Learning)は、複数のデバイスや機関が、データをプライベートに保存しながら、機械学習モデルを協調的にトレーニングすることを可能にする、新しいフレームワークである。
本研究では,データの統計的不均一性を正式に分類し,それに直面することのできる最も顕著な学習戦略をレビューする。
同時に、継続学習のような他の機械学習フレームワークからのアプローチを導入し、データの不均一性にも対処し、フェデレートラーニング設定に容易に適応できるようにします。
論文 参考訳(メタデータ) (2021-11-26T09:57:11Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - FedH2L: Federated Learning with Model and Statistical Heterogeneity [75.61234545520611]
フェデレートラーニング(FL)は、分散参加者が個々のデータのプライバシを犠牲にすることなく、強力なグローバルモデルを集合的に学習することを可能にする。
我々はFedH2Lを導入し、これはモデルアーキテクチャに非依存であり、参加者間で異なるデータ分散に対して堅牢である。
パラメータや勾配を共有するアプローチとは対照的に、FedH2Lは相互蒸留に依存し、参加者間で共有シードセットの後方のみを分散的に交換する。
論文 参考訳(メタデータ) (2021-01-27T10:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。