LIFE: A Generalizable Autodidactic Pipeline for 3D OCT-A Vessel
Segmentation
- URL: http://arxiv.org/abs/2107.04282v1
- Date: Fri, 9 Jul 2021 07:51:33 GMT
- Title: LIFE: A Generalizable Autodidactic Pipeline for 3D OCT-A Vessel
Segmentation
- Authors: Dewei Hu, Can Cui, Hao Li, Kathleen E. Larson, Yuankai K. Tao and Ipek
Oguz
- Abstract summary: Recent deep learning algorithms produced promising vascular segmentation results.
However, 3D retinal vessel segmentation remains difficult due to the lack of manually annotated training data.
We propose a learning-based method that is only supervised by a self-synthesized modality.
- Score: 5.457168581192045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical coherence tomography (OCT) is a non-invasive imaging technique widely
used for ophthalmology. It can be extended to OCT angiography (OCT-A), which
reveals the retinal vasculature with improved contrast. Recent deep learning
algorithms produced promising vascular segmentation results; however, 3D
retinal vessel segmentation remains difficult due to the lack of manually
annotated training data. We propose a learning-based method that is only
supervised by a self-synthesized modality named local intensity fusion (LIF).
LIF is a capillary-enhanced volume computed directly from the input OCT-A. We
then construct the local intensity fusion encoder (LIFE) to map a given OCT-A
volume and its LIF counterpart to a shared latent space. The latent space of
LIFE has the same dimensions as the input data and it contains features common
to both modalities. By binarizing this latent space, we obtain a volumetric
vessel segmentation. Our method is evaluated in a human fovea OCT-A and three
zebrafish OCT-A volumes with manual labels. It yields a Dice score of 0.7736 on
human data and 0.8594 +/- 0.0275 on zebrafish data, a dramatic improvement over
existing unsupervised algorithms.
Related papers
- A label-free and data-free training strategy for vasculature segmentation in serial sectioning OCT data [4.746694624239095]
Serial sectioning Optical Coherence Tomography (s OCT) is becoming increasingly popular to study post-mortem neurovasculature.
Here, we leverage synthetic datasets of vessels to train a deep learning segmentation model.
Both approaches yield similar Dice scores, although with very different false positive and false negative rates.
arXiv Detail & Related papers (2024-05-22T15:39:31Z) - Simulation-Based Segmentation of Blood Vessels in Cerebral 3D OCTA
Images [4.945556328362821]
We propose utilizing synthetic data to supervise segmentation algorithms.
We transform patches from vessel graphs into synthetic cerebral 3D OCTA images paired with their matching ground truth labels.
In extensive experiments, we demonstrate that our approach achieves competitive results.
arXiv Detail & Related papers (2024-03-11T19:14:51Z) - Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging [33.23991248643144]
We present a thorough literature review, highlighting the state of machine learning techniques across diverse organs.
Our goal is to provide a foundation on the topic and identify a robust baseline model for application to vascular segmentation in a new imaging modality.
HiP CT enables 3D imaging of complete organs at an unprecedented resolution of ca. 20mm per voxel.
arXiv Detail & Related papers (2023-11-22T11:15:38Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Are Macula or Optic Nerve Head Structures better at Diagnosing Glaucoma?
An Answer using AI and Wide-Field Optical Coherence Tomography [48.7576911714538]
We developed a deep learning algorithm to automatically segment structures of the optic nerve head (ONH) and macula in 3D wide-field OCT scans.
Our classification algorithm was able to segment ONH and macular tissues with a DC of 0.94 $pm$ 0.003.
This may encourage the mainstream adoption of 3D wide-field OCT scans.
arXiv Detail & Related papers (2022-10-13T01:51:29Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
The identification of retinal layer thicknesses serves as an essential task be done for each patient separately.
The elaboration of automated segmentation models has become an important task in the field of medical image processing.
We propose a novel, purely data driven textitgeometric approach to order-constrained 3D OCT retinal cell layer segmentation
arXiv Detail & Related papers (2020-09-10T01:57:53Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
We release a dedicated OCT-A SEgmentation dataset (ROSE), which consists of 229 OCT-A images with vessel annotations at either centerline-level or pixel level.
Secondly, we propose a novel Split-based Coarse-to-Fine vessel segmentation network (SCF-Net), with the ability to detect thick and thin vessels separately.
In the SCF-Net, a split-based coarse segmentation (SCS) module is first introduced to produce a preliminary confidence map of vessels, and a split-based refinement (SRN) module is then used to optimize the shape/contour of
arXiv Detail & Related papers (2020-07-10T06:54:19Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.