論文の概要: Generalization of the Change of Variables Formula with Applications to
Residual Flows
- arxiv url: http://arxiv.org/abs/2107.04346v1
- Date: Fri, 9 Jul 2021 10:31:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-12 21:24:41.276590
- Title: Generalization of the Change of Variables Formula with Applications to
Residual Flows
- Title(参考訳): 変数式の変化の一般化と残留流への応用
- Authors: Niklas Koenen, Marvin N. Wright, Peter Maa{\ss} and Jens Behrmann
- Abstract要約: 正規化フローは可変式の変化を利用してフレキシブル密度モデルを定義する。
一般化変換として $mathcalL$-diffeomorphisms を導入し、これはルベーグ測度集合上のこれらの要求に反する可能性がある。
この緩和により、ReLUのような非滑らかなアクティベーション関数を使用することができる。
- 参考スコア(独自算出の注目度): 7.57024681220677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Normalizing flows leverage the Change of Variables Formula (CVF) to define
flexible density models. Yet, the requirement of smooth transformations
(diffeomorphisms) in the CVF poses a significant challenge in the construction
of these models. To enlarge the design space of flows, we introduce
$\mathcal{L}$-diffeomorphisms as generalized transformations which may violate
these requirements on zero Lebesgue-measure sets. This relaxation allows e.g.
the use of non-smooth activation functions such as ReLU. Finally, we apply the
obtained results to planar, radial, and contractive residual flows.
- Abstract(参考訳): 正規化フローは可変式 (CVF) を利用してフレキシブル密度モデルを定義する。
しかし、CVFにおける滑らかな変換(微分同相)の要求は、これらのモデルの構築において大きな課題となる。
フローの設計空間を拡大するために、一般化変換として $\mathcal{L}$-diffeomorphisms を導入する。
この緩和は、例えば、
ReLUのような非滑らかなアクティベーション関数の使用。
最後に,得られた結果を平面流,ラジアル流,収縮的残留流に適用する。
関連論文リスト
- Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
GAM(Generalized Additive Models)は、変数とターゲットの間の非線形関係をキャプチャできるが、複雑な特徴相互作用をキャプチャすることはできない。
本稿では,GAMのフレキシブルな形状関数と,数学的表現に見られる複雑な特徴相互作用を融合させる形状表現算術(SHARE)を提案する。
また、標準制約を超えた表現の透明性を保証するSHAREを構築するための一連のルールを設計する。
論文 参考訳(メタデータ) (2024-04-15T13:44:01Z) - PINF: Continuous Normalizing Flows for Physics-Constrained Deep Learning [8.000355537589224]
本稿では,連続正規化フローの新たな拡張である物理インフォームド正規化フロー(PINF)を紹介する。
メッシュフリーかつ因果フリーな本手法は,高次元時間依存性と定常状態Fokker-Planck方程式を効率的に解ける。
論文 参考訳(メタデータ) (2023-09-26T15:38:57Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
本稿では,潜在因果変数を間接的に観察する際の因果表現学習問題について検討する。
目的は、 (i) 未知の線形変換(スケーリングまで)を回復し、 (ii) 潜在変数の下の有向非巡回グラフ(DAG)を決定することである。
論文 参考訳(メタデータ) (2023-01-19T18:39:48Z) - Equivariant Discrete Normalizing Flows [10.867162810786361]
離散層を用いた等変正規化フローの構築に着目する。
2つの新しい同変フロー:$G$-カップリングフローと$G$-Residualフローを導入する。
我々の構成である$G$-Residual Flowsも普遍的であり、$G$-equivariant diffeomorphismが$G$-Residual Flowによって正確にマッピング可能であることを証明している。
論文 参考訳(メタデータ) (2021-10-16T20:16:00Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
本稿では, 地理的に整理された潜伏変数を用いた深部生成モデルを効率的に学習するための新しい手法であるTopographic VAEを紹介する。
このようなモデルでは,MNIST上での桁数クラス,幅,スタイルなどの健全な特徴に応じて,その活性化を組織化することが実際に学べることが示される。
我々は、既存の群同変ニューラルネットワークの能力を拡張して、複素変換に近似した同値性を示す。
論文 参考訳(メタデータ) (2021-09-03T09:25:57Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) は連続正規化フロー(CNF)ファミリーにおける新しい生成モデルのクラスである
MFは、訓練中にODEソルバを介して呼び出しやバックプロパゲートを必要としない。
一般曲面からのサンプリングにおけるフローモデルの利用を初めて実演する。
論文 参考訳(メタデータ) (2021-08-18T09:00:24Z) - Nonlinear Evolutionary PDE-Based Refinement of Optical Flow [0.0]
剛性および流動性の両方の運動推定にモデルをどのように適合させるかを示す。
アルゴリズムの結果を異なるデータセットで示す。
論文 参考訳(メタデータ) (2021-01-31T16:35:26Z) - SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows [78.77808270452974]
SurVAE Flowsは、VAEと正規化フローを含む構成可能な変換のためのモジュラーフレームワークである。
提案手法は,SurVAE フローとして表現できることが示唆された。
論文 参考訳(メタデータ) (2020-07-06T13:13:22Z) - The Convolution Exponential and Generalized Sylvester Flows [82.18442368078804]
本稿では,線形変換の指数関数を取り入れ,線形フローを構築する新しい手法を提案する。
重要な洞察として、指数関数は暗黙的に計算できるため、畳み込み層を使用することができる。
畳み込み指数はCIFAR10上の生成フローにおいて他の線形変換よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-02T19:43:36Z) - Invertible Generative Modeling using Linear Rational Splines [11.510009152620666]
正規化フローは、可逆写像の集合を通して任意の確率分布をモデル化しようとする。
最初のフロー設計ではアフィン変換に基づく結合層マッピングが用いられた。
アフィン変換の代替として機能するイントレピッドは注目されている。
論文 参考訳(メタデータ) (2020-01-15T08:05:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。