Multiaccurate Proxies for Downstream Fairness
- URL: http://arxiv.org/abs/2107.04423v1
- Date: Fri, 9 Jul 2021 13:16:44 GMT
- Title: Multiaccurate Proxies for Downstream Fairness
- Authors: Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron
Roth, and Saeed Sharifi-Malvajerdi
- Abstract summary: We study the problem of training a model that must obey demographic fairness conditions when the sensitive features are not available at training time.
We adopt a fairness pipeline perspective, in which an "upstream" learner that does have access to the sensitive features will learn a proxy model for these features from the other attributes.
We show that obeying multiaccuracy constraints with respect to the downstream model class suffices for this purpose.
- Score: 20.36220509798361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of training a model that must obey demographic fairness
conditions when the sensitive features are not available at training time -- in
other words, how can we train a model to be fair by race when we don't have
data about race? We adopt a fairness pipeline perspective, in which an
"upstream" learner that does have access to the sensitive features will learn a
proxy model for these features from the other attributes. The goal of the proxy
is to allow a general "downstream" learner -- with minimal assumptions on their
prediction task -- to be able to use the proxy to train a model that is fair
with respect to the true sensitive features. We show that obeying multiaccuracy
constraints with respect to the downstream model class suffices for this
purpose, and provide sample- and oracle efficient-algorithms and generalization
bounds for learning such proxies. In general, multiaccuracy can be much easier
to satisfy than classification accuracy, and can be satisfied even when the
sensitive features are hard to predict.
Related papers
- Predicting the Performance of Black-box LLMs through Self-Queries [60.87193950962585]
Large language models (LLMs) are increasingly relied on in AI systems, predicting when they make mistakes is crucial.
In this paper, we extract features of LLMs in a black-box manner by using follow-up prompts and taking the probabilities of different responses as representations.
We demonstrate that training a linear model on these low-dimensional representations produces reliable predictors of model performance at the instance level.
arXiv Detail & Related papers (2025-01-02T22:26:54Z) - What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
We aim to train models that mitigate group fairness disparity without causing harm to model accuracy.
The current data acquisition methods, such as fair active learning approaches, typically require annotating sensitive attributes.
We propose a tractable active data sampling algorithm that does not rely on training group annotations.
arXiv Detail & Related papers (2024-02-20T07:57:38Z) - Improving Fairness using Vision-Language Driven Image Augmentation [60.428157003498995]
Fairness is crucial when training a deep-learning discriminative model, especially in the facial domain.
Models tend to correlate specific characteristics (such as age and skin color) with unrelated attributes (downstream tasks)
This paper proposes a method to mitigate these correlations to improve fairness.
arXiv Detail & Related papers (2023-11-02T19:51:10Z) - Model Debiasing via Gradient-based Explanation on Representation [14.673988027271388]
We propose a novel fairness framework that performs debiasing with regard to sensitive attributes and proxy attributes.
Our framework achieves better fairness-accuracy trade-off on unstructured and structured datasets than previous state-of-the-art approaches.
arXiv Detail & Related papers (2023-05-20T11:57:57Z) - Fairness-guided Few-shot Prompting for Large Language Models [93.05624064699965]
In-context learning can suffer from high instability due to variations in training examples, example order, and prompt formats.
We introduce a metric to evaluate the predictive bias of a fixed prompt against labels or a given attributes.
We propose a novel search strategy based on the greedy search to identify the near-optimal prompt for improving the performance of in-context learning.
arXiv Detail & Related papers (2023-03-23T12:28:25Z) - Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access [12.447577504758485]
We propose a framework to train fair classifiers without access to sensitive attributes on either training or validation data.
We show theoretically and empirically that these proxy labels can be used to maximize fairness under average accuracy constraints.
arXiv Detail & Related papers (2023-02-02T19:45:50Z) - Canary in a Coalmine: Better Membership Inference with Ensembled
Adversarial Queries [53.222218035435006]
We use adversarial tools to optimize for queries that are discriminative and diverse.
Our improvements achieve significantly more accurate membership inference than existing methods.
arXiv Detail & Related papers (2022-10-19T17:46:50Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
We propose a semi-supervised fair representation learning approach based on adversarial variational autoencoder.
We use a bias-aware model to capture inherent bias information on sensitive attribute.
We also use a bias-free model to learn debiased fair representations by using adversarial learning to remove bias information from them.
arXiv Detail & Related papers (2022-04-01T15:57:47Z) - Identifying Wrongly Predicted Samples: A Method for Active Learning [6.976600214375139]
We propose a simple sample selection criterion that moves beyond uncertainty.
We show state-of-the-art results and better rates at identifying wrongly predicted samples.
arXiv Detail & Related papers (2020-10-14T09:00:42Z) - Do Adversarially Robust ImageNet Models Transfer Better? [102.09335596483695]
adversarially robust models often perform better than their standard-trained counterparts when used for transfer learning.
Our results are consistent with (and in fact, add to) recent hypotheses stating that robustness leads to improved feature representations.
arXiv Detail & Related papers (2020-07-16T17:42:40Z) - Fairness-Aware Learning with Prejudice Free Representations [2.398608007786179]
We propose a novel algorithm that can effectively identify and treat latent discriminating features.
The approach helps to collect discrimination-free features that would improve the model performance.
arXiv Detail & Related papers (2020-02-26T10:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.