論文の概要: Using Machine Translation to Localize Task Oriented NLG Output
- arxiv url: http://arxiv.org/abs/2107.04512v1
- Date: Fri, 9 Jul 2021 15:56:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-12 13:58:21.647866
- Title: Using Machine Translation to Localize Task Oriented NLG Output
- Title(参考訳): タスク指向NLG出力のローカライズに機械翻訳を用いる
- Authors: Scott Roy, Cliff Brunk, Kyu-Young Kim, Justin Zhao, Markus Freitag,
Mihir Kale, Gagan Bansal, Sidharth Mudgal, Chris Varano
- Abstract要約: 本稿では、英語の出力に機械翻訳を適用することにより、これを行う。
要求される品質バーは完璧に近く、文の範囲は極めて狭く、機械翻訳訓練データとは大きく異なることが多い。
既存のアイデアに基づいて新しいものを追加することで、必要な品質バーに到達することができます。
- 参考スコア(独自算出の注目度): 5.770385426429663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the challenges in a task oriented natural language application like
the Google Assistant, Siri, or Alexa is to localize the output to many
languages. This paper explores doing this by applying machine translation to
the English output. Using machine translation is very scalable, as it can work
with any English output and can handle dynamic text, but otherwise the problem
is a poor fit. The required quality bar is close to perfection, the range of
sentences is extremely narrow, and the sentences are often very different than
the ones in the machine translation training data. This combination of
requirements is novel in the field of domain adaptation for machine
translation. We are able to reach the required quality bar by building on
existing ideas and adding new ones: finetuning on in-domain translations,
adding sentences from the Web, adding semantic annotations, and using automatic
error detection. The paper shares our approach and results, together with a
distillation model to serve the translation models at scale.
- Abstract(参考訳): Google Assistant、Siri、Alexaといったタスク指向自然言語アプリケーションの課題のひとつは、出力を多くの言語にローカライズすることだ。
本稿では、英語の出力に機械翻訳を適用してこれを行う。
機械翻訳を使うことは非常にスケーラブルで、あらゆる英語の出力で動作し、動的テキストを処理できる。
要求される品質バーは完璧に近く、文章の範囲は非常に狭く、機械翻訳訓練データとは大きく異なることが多い。
この要求の組み合わせは、機械翻訳のためのドメイン適応の分野では新しくなっている。
既存のアイデアに基づいて、ドメイン内翻訳の微調整、Webからの文の追加、セマンティックアノテーションの追加、自動エラー検出など、必要な品質バーに到達することができます。
論文は, 大規模翻訳モデルを実現するための蒸留モデルとともに, 我々のアプローチと結果を共有する。
関連論文リスト
- Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing [12.843274390224853]
大規模言語モデル(LLM)は、様々な自然言語処理タスクでかなりの成功を収めている。
ニューラルネットワーク翻訳における最先端性能は,まだ達成できていない。
直接翻訳者ではなく,自動編集者 (APE) としてLLMを適用することを提案する。
論文 参考訳(メタデータ) (2023-10-23T12:22:15Z) - Do Multilingual Language Models Think Better in English? [24.713751471567395]
翻訳テストは多言語言語モデルの性能を向上させるための一般的な手法である。
本研究では,外部翻訳システムの必要性を克服する自己翻訳という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-02T15:29:22Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
本稿では,LLMに翻訳学習を教えるために,サンプルを用いた新しいフレームワークを提案する。
我々のアプローチは、正しい翻訳例と間違った翻訳例をモデルに提示し、好みの損失を使ってモデルの学習をガイドすることである。
本研究は,翻訳タスクのための微調整LDMの新しい視点を提供し,高品質な翻訳を実現するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2023-07-10T08:15:40Z) - On the Copying Problem of Unsupervised NMT: A Training Schedule with a
Language Discriminator Loss [120.19360680963152]
unsupervised neural machine translation (UNMT)は多くの言語で成功している。
コピー問題、すなわち、入力文の一部を翻訳として直接コピーする問題は、遠い言語対に共通している。
本稿では,言語識別器の損失を取り入れた,シンプルだが効果的な訓練スケジュールを提案する。
論文 参考訳(メタデータ) (2023-05-26T18:14:23Z) - Decomposed Prompting for Machine Translation Between Related Languages
using Large Language Models [55.35106713257871]
DecoMTは、単語チャンク翻訳のシーケンスに翻訳プロセスを分解する、数発のプロンプトの新しいアプローチである。
DecoMTはBLOOMモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-22T14:52:47Z) - The Best of Both Worlds: Combining Human and Machine Translations for
Multilingual Semantic Parsing with Active Learning [50.320178219081484]
人文翻訳と機械翻訳の両方の長所を生かした能動的学習手法を提案する。
理想的な発話選択は、翻訳されたデータの誤りとバイアスを著しく低減することができる。
論文 参考訳(メタデータ) (2023-05-22T05:57:47Z) - Translate your gibberish: black-box adversarial attack on machine
translation systems [0.0]
我々は、ロシア語から英語への翻訳作業において、最先端の機械翻訳ツールを騙すための簡単なアプローチを提示する。
Google、DeepL、Yandexなど多くのオンライン翻訳ツールが、非意味な逆入力クエリに対して間違ったあるいは攻撃的な翻訳を生成する可能性があることを示す。
この脆弱性は、新しい言語を理解することを妨げ、単に機械翻訳システムを使用する際のユーザエクスペリエンスを悪化させる可能性がある。
論文 参考訳(メタデータ) (2023-03-20T09:52:52Z) - BitextEdit: Automatic Bitext Editing for Improved Low-Resource Machine
Translation [53.55009917938002]
自動編集によりマイニングしたビットクストを改良することを提案する。
提案手法は,5つの低リソース言語ペアと10の翻訳方向に対して,最大8個のBLEUポイントでCCMatrixマイニングビットクストの品質を向上することを示す。
論文 参考訳(メタデータ) (2021-11-12T16:00:39Z) - Improving Sentiment Analysis over non-English Tweets using Multilingual
Transformers and Automatic Translation for Data-Augmentation [77.69102711230248]
我々は、英語のつぶやきを事前学習し、自動翻訳を用いてデータ拡張を適用して非英語の言語に適応する多言語トランスフォーマーモデルを提案する。
我々のフランス語、スペイン語、ドイツ語、イタリア語での実験は、この手法が非英語のツイートの小さなコーパスよりも、トランスフォーマーの結果を改善する効果的な方法であることを示唆している。
論文 参考訳(メタデータ) (2020-10-07T15:44:55Z) - Computer Assisted Translation with Neural Quality Estimation and
Automatic Post-Editing [18.192546537421673]
本稿では,機械翻訳出力の品質推定と自動編集のためのエンドツーエンドのディープラーニングフレームワークを提案する。
我々のゴールは、誤り訂正の提案を提供することであり、解釈可能なモデルにより、人間の翻訳者の負担を軽減することである。
論文 参考訳(メタデータ) (2020-09-19T00:29:00Z) - Learning to Detect Unacceptable Machine Translations for Downstream
Tasks [33.07594909221625]
機械翻訳を言語横断パイプラインに配置し、下流タスクを導入し、機械翻訳のタスク固有の受容性を定義する。
これにより、並列データを活用して、大規模なアクセプタビリティアノテーションを自動的に生成できます。
我々は、下流のタスクや翻訳モデルに対するフレームワークの有効性を示す実験を行う。
論文 参考訳(メタデータ) (2020-05-08T09:37:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。