論文の概要: Behavior Self-Organization Supports Task Inference for Continual Robot
Learning
- arxiv url: http://arxiv.org/abs/2107.04533v1
- Date: Fri, 9 Jul 2021 16:37:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-12 13:36:38.899493
- Title: Behavior Self-Organization Supports Task Inference for Continual Robot
Learning
- Title(参考訳): ロボット学習のためのタスク推論を支援する行動自己組織化
- Authors: Muhammad Burhan Hafez, Stefan Wermter
- Abstract要約: 本稿では,ロボット制御タスクの連続学習に対する新しいアプローチを提案する。
本手法は, 漸進的に自己組織化された行動によって, 行動埋め込みの教師なし学習を行う。
従来の手法とは異なり,本手法ではタスク分布の仮定は行わず,タスクを推論するタスク探索も必要としない。
- 参考スコア(独自算出の注目度): 18.071689266826212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in robot learning have enabled robots to become increasingly
better at mastering a predefined set of tasks. On the other hand, as humans, we
have the ability to learn a growing set of tasks over our lifetime. Continual
robot learning is an emerging research direction with the goal of endowing
robots with this ability. In order to learn new tasks over time, the robot
first needs to infer the task at hand. Task inference, however, has received
little attention in the multi-task learning literature. In this paper, we
propose a novel approach to continual learning of robotic control tasks. Our
approach performs unsupervised learning of behavior embeddings by incrementally
self-organizing demonstrated behaviors. Task inference is made by finding the
nearest behavior embedding to a demonstrated behavior, which is used together
with the environment state as input to a multi-task policy trained with
reinforcement learning to optimize performance over tasks. Unlike previous
approaches, our approach makes no assumptions about task distribution and
requires no task exploration to infer tasks. We evaluate our approach in
experiments with concurrently and sequentially presented tasks and show that it
outperforms other multi-task learning approaches in terms of generalization
performance and convergence speed, particularly in the continual learning
setting.
- Abstract(参考訳): ロボット学習の最近の進歩により、ロボットは事前定義されたタスクを習得する能力がますます向上している。
一方、人間として、私たちは生涯にわたって増え続けるタスクを学習する能力を持っています。
連続的なロボット学習は、ロボットにこの能力を与えることを目標とする、新たな研究方向である。
時間とともに新しいタスクを学ぶために、ロボットはまず手元のタスクを推測する必要がある。
しかし,タスク推論はマルチタスク学習文学においてほとんど注目されていない。
本稿では,ロボット制御タスクの連続学習のための新しい手法を提案する。
提案手法は,段階的な自己組織的行動による行動埋め込みの教師なし学習を行う。
タスク推論は、タスクよりもパフォーマンスを最適化するために強化学習で訓練されたマルチタスクポリシーへの入力として、環境状態とともに使用される実証行動に最も近い振る舞いを埋め込むことによって行われる。
従来の手法とは異なり,本手法ではタスク分布の仮定は行わず,タスクを推論するタスク探索は不要である。
並列かつ逐次的に提示されたタスクを用いた実験において,本手法は一般化性能と収束速度,特に連続学習環境において,他のマルチタスク学習手法よりも優れていることを示す。
関連論文リスト
- Continual Robot Learning using Self-Supervised Task Inference [19.635428830237842]
新しいタスクを継続的に学習するための自己教師型タスク推論手法を提案する。
我々は、行動マッチング型自己教師型学習目標を用いて、新しいタスク推論ネットワーク(TINet)を訓練する。
マルチタスクポリシはTINet上に構築され、タスクよりもパフォーマンスを最適化するために強化学習でトレーニングされている。
論文 参考訳(メタデータ) (2023-09-10T09:32:35Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
固有のモチベーションは、目標間のトレーニング時間を適切に割り当てるタスクに依存しないシグナルを生成することが証明されている。
内在的に動機付けられたオープンエンドラーニングの分野におけるほとんどの研究は、目標が互いに独立しているシナリオに焦点を当てているが、相互依存タスクの自律的な獲得を研究するのはごくわずかである。
特に,タスク間の関係に関する情報をアーキテクチャのより高レベルなレベルで組み込むことの重要性を示す。
そして、自律的に取得したシーケンスを格納する新しい学習層を追加することで、前者を拡張する新しいシステムであるH-GRAILを紹介する。
論文 参考訳(メタデータ) (2022-05-16T10:43:01Z) - Unsupervised Reinforcement Learning for Transferable Manipulation Skill
Discovery [22.32327908453603]
ロボット工学における現在の強化学習(RL)は、しばしば新しい下流タスクへの一般化の難しさを経験する。
本稿では,タスク固有の報酬にアクセスできることなく,タスクに依存しない方法でエージェントを事前訓練するフレームワークを提案する。
提案手法は,最も多様なインタラクション動作を実現し,下流タスクのサンプル効率を大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-04-29T06:57:46Z) - Towards More Generalizable One-shot Visual Imitation Learning [81.09074706236858]
汎用ロボットは、幅広いタスクを習得し、過去の経験を生かして、新しいタスクを素早く学ぶことができるべきである。
ワンショット模倣学習(OSIL)は、専門家のデモンストレーションでエージェントを訓練することで、この目標にアプローチする。
我々は、より野心的なマルチタスク設定を調査することで、より高度な一般化能力を追求する。
論文 参考訳(メタデータ) (2021-10-26T05:49:46Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Recent Advances in Leveraging Human Guidance for Sequential
Decision-Making Tasks [60.380501589764144]
人工知能の長年の目標は、シーケンシャルな意思決定を必要とするタスクを実行することを学ぶことができる人工知能を作ることである。
学習し行動する人工エージェントであるが、実行すべき特定のタスクを特定するのは人間次第である。
この調査は、主に人間のガイダンスに依存する5つの最近の機械学習フレームワークのハイレベルな概要を提供する。
論文 参考訳(メタデータ) (2021-07-13T03:11:04Z) - Discovering Generalizable Skills via Automated Generation of Diverse
Tasks [82.16392072211337]
本稿では,多種多様なタスクの自動生成による一般化可能なスキルの発見手法を提案する。
教師なしスキル発見の先行研究とは対照的に,本手法では各スキルをトレーニング可能なタスクジェネレータが生成するユニークなタスクとペアリングする。
生成したタスクにおけるロボットの動作に定義されたタスク判別器を共同で訓練し、多様性目標の低いエビデンスを推定する。
学習スキルは階層的な強化学習アルゴリズムで構成され、目に見えない目標タスクを解決する。
論文 参考訳(メタデータ) (2021-06-26T03:41:51Z) - CRIL: Continual Robot Imitation Learning via Generative and Prediction
Model [8.896427780114703]
本研究では,ロボットが個別に新しいタスクを継続的に学習することを可能にする,連続的な模倣学習能力を実現する方法について研究する。
本稿では,生成的対向ネットワークと動的予測モデルの両方を利用する新しいトラジェクトリ生成モデルを提案する。
本手法の有効性をシミュレーションと実世界操作の両方で実証した。
論文 参考訳(メタデータ) (2021-06-17T12:15:57Z) - Intrinsically Motivated Open-Ended Multi-Task Learning Using Transfer
Learning to Discover Task Hierarchy [0.0]
オープンエンド環境では、ロボットは階層的強化学習において複数のパラメータ化された制御タスクを学習する必要がある。
最も複雑なタスクは、より単純なタスクから知識を転送することでより簡単に学習でき、タスクにアクションの複雑さを適用することでより早く学習できることを示します。
複雑な行動のタスク指向表現(手順と呼ばれる)を提案し、オンラインのタスク関係とアクションプリミティブの無制限のシーケンスを学び、環境の異なる可観測性を制御する。
論文 参考訳(メタデータ) (2021-02-19T10:44:08Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。