論文の概要: CRIL: Continual Robot Imitation Learning via Generative and Prediction
Model
- arxiv url: http://arxiv.org/abs/2106.09422v1
- Date: Thu, 17 Jun 2021 12:15:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-19 00:36:18.563068
- Title: CRIL: Continual Robot Imitation Learning via Generative and Prediction
Model
- Title(参考訳): CRIL:生成・予測モデルによる継続型ロボット模倣学習
- Authors: Chongkai Gao, Haichuan Gao, Shangqi Guo, Tianren Zhang, and Feng Chen
- Abstract要約: 本研究では,ロボットが個別に新しいタスクを継続的に学習することを可能にする,連続的な模倣学習能力を実現する方法について研究する。
本稿では,生成的対向ネットワークと動的予測モデルの両方を利用する新しいトラジェクトリ生成モデルを提案する。
本手法の有効性をシミュレーションと実世界操作の両方で実証した。
- 参考スコア(独自算出の注目度): 8.896427780114703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imitation learning (IL) algorithms have shown promising results for robots to
learn skills from expert demonstrations. However, for versatile robots nowadays
that need to learn diverse tasks, providing and learning the multi-task
demonstrations all at once are both difficult. To solve this problem, in this
work we study how to realize continual imitation learning ability that empowers
robots to continually learn new tasks one by one, thus reducing the burden of
multi-task IL and accelerating the process of new task learning at the same
time. We propose a novel trajectory generation model that employs both a
generative adversarial network and a dynamics prediction model to generate
pseudo trajectories from all learned tasks in the new task learning process to
achieve continual imitation learning ability. Our experiments on both
simulation and real world manipulation tasks demonstrate the effectiveness of
our method.
- Abstract(参考訳): 模倣学習(il)アルゴリズムは、ロボットが専門家のデモンストレーションからスキルを学ぶ有望な結果を示している。
しかし、現在多様なタスクを学ばなければならない多用途ロボットにとっては、同時にマルチタスクのデモを提供し、学習することは、どちらも難しい。
そこで本研究では,ロボットが1つずつ新しいタスクを継続的に学習し,マルチタスクILの負担を軽減し,同時に新しいタスク学習のプロセスを加速する,連続的な模倣学習能力を実現する方法について検討する。
本稿では,創発的逆ネットワークとダイナミクス予測モデルを用いて,新しいタスク学習過程における学習タスクの疑似軌跡を生成し,逐次模倣学習能力を実現する新しい軌道生成モデルを提案する。
本手法の有効性をシミュレーションと実世界操作の両方で実証した。
関連論文リスト
- SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
タスクをより小さな学習サブプロブレムに分解し、第2に模倣と強化学習を組み合わせてその強みを最大化するシステムであるspireを提案する。
我々は、模倣学習、強化学習、計画を統合する従来の手法よりも平均タスク性能が35%から50%向上していることを発見した。
論文 参考訳(メタデータ) (2024-10-23T17:42:07Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
我々はマルチモーダルなプロンプトを理解するためにロボットを訓練する問題に取り組む。
このようなタスクは、視覚と言語信号の相互接続と相補性を理解するロボットの能力にとって大きな課題となる。
マルチモーダルプロンプトを用いてロボット操作を行うためのポリシーを学習する効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-14T22:24:58Z) - Continual Robot Learning using Self-Supervised Task Inference [19.635428830237842]
新しいタスクを継続的に学習するための自己教師型タスク推論手法を提案する。
我々は、行動マッチング型自己教師型学習目標を用いて、新しいタスク推論ネットワーク(TINet)を訓練する。
マルチタスクポリシはTINet上に構築され、タスクよりもパフォーマンスを最適化するために強化学習でトレーニングされている。
論文 参考訳(メタデータ) (2023-09-10T09:32:35Z) - Continual Learning from Demonstration of Robotics Skills [5.573543601558405]
ロボットに動きのスキルを教える方法は、一度に1つのスキルのトレーニングに集中する。
本稿では,ハイパーネットとニューラル常微分方程式解法を用いた実験から連続学習へのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-14T16:26:52Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
我々は,実世界の長距離ロボット操作作業に,スキル発見による取り組みを行う。
未解決のデモンストレーションから再利用可能なスキルのライブラリを学ぶためのボトムアップアプローチを提案する。
提案手法は,多段階操作タスクにおける最先端の模倣学習手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-28T16:18:54Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Behavior Self-Organization Supports Task Inference for Continual Robot
Learning [18.071689266826212]
本稿では,ロボット制御タスクの連続学習に対する新しいアプローチを提案する。
本手法は, 漸進的に自己組織化された行動によって, 行動埋め込みの教師なし学習を行う。
従来の手法とは異なり,本手法ではタスク分布の仮定は行わず,タスクを推論するタスク探索も必要としない。
論文 参考訳(メタデータ) (2021-07-09T16:37:27Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。