論文の概要: InfoVAEGAN : learning joint interpretable representations by information
maximization and maximum likelihood
- arxiv url: http://arxiv.org/abs/2107.04705v1
- Date: Fri, 9 Jul 2021 22:38:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-14 10:10:49.026502
- Title: InfoVAEGAN : learning joint interpretable representations by information
maximization and maximum likelihood
- Title(参考訳): infovaegan : 情報最大化と最大確率による理解可能表現の学習
- Authors: Fei Ye and Adrian G. Bors
- Abstract要約: 本稿では,変分オートエンコーダ(VAE)の推論能力とGAN(Generative Adversarial Networks)の機能を組み合わせた表現学習アルゴリズムを提案する。
提案したモデルはInfoVAEGANと呼ばれ、ジェネレータとディスクリミネータの3つのネットワークで構成されている。
- 参考スコア(独自算出の注目度): 15.350366047108103
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Learning disentangled and interpretable representations is an important step
towards accomplishing comprehensive data representations on the manifold. In
this paper, we propose a novel representation learning algorithm which combines
the inference abilities of Variational Autoencoders (VAE) with the
generalization capability of Generative Adversarial Networks (GAN). The
proposed model, called InfoVAEGAN, consists of three networks~: Encoder,
Generator and Discriminator. InfoVAEGAN aims to jointly learn discrete and
continuous interpretable representations in an unsupervised manner by using two
different data-free log-likelihood functions onto the variables sampled from
the generator's distribution. We propose a two-stage algorithm for optimizing
the inference network separately from the generator training. Moreover, we
enforce the learning of interpretable representations through the maximization
of the mutual information between the existing latent variables and those
created through generative and inference processes.
- Abstract(参考訳): 乱れと解釈可能な表現の学習は、多様体上の包括的なデータ表現を達成するための重要なステップである。
本稿では,可変オートエンコーダ(vae)の推論能力と生成型逆ネットワーク(gan)の一般化能力を組み合わせた新しい表現学習アルゴリズムを提案する。
提案モデルはInfoVAEGANと呼ばれ,Encoder, Generator, Discriminatorの3つのネットワークで構成されている。
InfoVAEGANは、2つの異なるデータフリーログライクな関数をジェネレータの分布からサンプリングされた変数に使用することにより、離散的かつ連続的な解釈可能な表現を教師なしで共同学習することを目的としている。
本稿では,生成ネットワークを生成器のトレーニングとは別に最適化する2段階アルゴリズムを提案する。
さらに,既存の潜伏変数と生成および推論プロセスによって生成された変数間の相互情報の最大化を通じて,解釈可能な表現の学習を実施する。
関連論文リスト
- Disentanglement with Factor Quantized Variational Autoencoders [11.086500036180222]
本稿では,生成因子に関する基礎的真理情報をモデルに提供しない離散変分オートエンコーダ(VAE)モデルを提案する。
本研究では, 離散表現を学習する上で, 連続表現を学習することの利点を実証する。
FactorQVAEと呼ばれる手法は,最適化に基づく不整合アプローチと離散表現学習を組み合わせた最初の手法である。
論文 参考訳(メタデータ) (2024-09-23T09:33:53Z) - Flow Factorized Representation Learning [109.51947536586677]
本稿では、異なる入力変換を定義する潜在確率パスの別個のセットを規定する生成モデルを提案する。
本モデルは,ほぼ同変モデルに近づきながら,標準表現学習ベンチマークにおいて高い確率を達成することを示す。
論文 参考訳(メタデータ) (2023-09-22T20:15:37Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
近年のインタラクティブセグメンテーション手法では,入力としてソースイメージ,ユーザガイダンス,従来予測されていたマスクを反復的に取り込んでいる。
本稿では,本質的な相違点に基づいてモデリングコンポーネントを分離するFDRN(Feature Decoupling-Recycling Network)を提案する。
論文 参考訳(メタデータ) (2023-08-07T12:26:34Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
本稿では、画像テキストコントラスト学習(ITC)、テキスト条件付き画像合成学習(IS)、相互意味整合性モデリング(RSC)を統合した統合マルチモーダルモデルUniDiffを提案する。
UniDiffはマルチモーダル理解と生成タスクの両方において汎用性を示す。
論文 参考訳(メタデータ) (2023-06-01T15:39:38Z) - Interpretable Sentence Representation with Variational Autoencoders and
Attention [0.685316573653194]
自然言語処理(NLP)における近年の表現学習技術の解釈可能性を高める手法を開発した。
変動オートエンコーダ (VAEs) は, 遅延生成因子の観測に有効である。
帰納的バイアスを持つ2つのモデルを構築し、潜在表現の情報を注釈付きデータなしで理解可能な概念に分離する。
論文 参考訳(メタデータ) (2023-05-04T13:16:15Z) - The Transitive Information Theory and its Application to Deep Generative
Models [0.0]
変分オートエンコーダ(VAE)は2つの反対方向に押される。
既存の方法では、圧縮と再構成の間のレート歪みのトレードオフに問題を絞り込む。
一般化のために学習した表現を再結合する機構とともに,非交叉表現の階層構造を学習するシステムを開発する。
論文 参考訳(メタデータ) (2022-03-09T22:35:02Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
入力に条件付けされた離散化の厳密度を動的に選択する学習を提案する。
コミュニケーションボトルネックの動的に変化する厳密さは、視覚的推論や強化学習タスクにおけるモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-02-02T23:54:26Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Two-Level Adversarial Visual-Semantic Coupling for Generalized Zero-shot
Learning [21.89909688056478]
トレーニング中に推論ネットワークを用いて生成ネットワークを増強する2段階のジョイントアイデアを提案する。
これにより、ビジュアルドメインとセマンティックドメイン間の効果的な知識伝達のための強力な相互モーダル相互作用が提供される。
提案手法は,4つのベンチマークデータセットに対して,いくつかの最先端手法に対して評価し,その性能を示す。
論文 参考訳(メタデータ) (2020-07-15T15:34:09Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
画像合成のために訓練されたGAN(Generative Adversarial Networks)の潜在空間に、解釈可能な次元の豊富なセットが出現することが示されている。
本研究では,GANが学習した内部表現について検討し,その基礎となる変動要因を教師なしで明らかにする。
本稿では,事前学習した重みを直接分解することで,潜在意味発見のためのクローズドフォーム因数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:05:36Z) - Generalized Adversarially Learned Inference [42.40405470084505]
我々は、画像生成器とエンコーダを逆向きにトレーニングし、画像と潜時ベクトル対の2つの結合分布を一致させることにより、GAN内の潜時変数を推定する方法を開発した。
我々は、望まれるソリューションに関する事前または学習知識に基づいて、再構築、自己監督、その他の形式の監督に関する複数のフィードバック層を組み込んだ。
論文 参考訳(メタデータ) (2020-06-15T02:18:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。