論文の概要: Flow Factorized Representation Learning
- arxiv url: http://arxiv.org/abs/2309.13167v1
- Date: Fri, 22 Sep 2023 20:15:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 21:54:04.937213
- Title: Flow Factorized Representation Learning
- Title(参考訳): フロー因子化表現学習
- Authors: Yue Song, T. Anderson Keller, Nicu Sebe, Max Welling
- Abstract要約: 本稿では、異なる入力変換を定義する潜在確率パスの別個のセットを規定する生成モデルを提案する。
本モデルは,ほぼ同変モデルに近づきながら,標準表現学習ベンチマークにおいて高い確率を達成することを示す。
- 参考スコア(独自算出の注目度): 109.51947536586677
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A prominent goal of representation learning research is to achieve
representations which are factorized in a useful manner with respect to the
ground truth factors of variation. The fields of disentangled and equivariant
representation learning have approached this ideal from a range of
complimentary perspectives; however, to date, most approaches have proven to
either be ill-specified or insufficiently flexible to effectively separate all
realistic factors of interest in a learned latent space. In this work, we
propose an alternative viewpoint on such structured representation learning
which we call Flow Factorized Representation Learning, and demonstrate it to
learn both more efficient and more usefully structured representations than
existing frameworks. Specifically, we introduce a generative model which
specifies a distinct set of latent probability paths that define different
input transformations. Each latent flow is generated by the gradient field of a
learned potential following dynamic optimal transport. Our novel setup brings
new understandings to both \textit{disentanglement} and \textit{equivariance}.
We show that our model achieves higher likelihoods on standard representation
learning benchmarks while simultaneously being closer to approximately
equivariant models. Furthermore, we demonstrate that the transformations
learned by our model are flexibly composable and can also extrapolate to new
data, implying a degree of robustness and generalizability approaching the
ultimate goal of usefully factorized representation learning.
- Abstract(参考訳): 表現学習研究の目立った目標は、変動の基底的真理因子に関して有用な方法で因果化される表現を達成することである。
アンタングルおよび同変表現学習の分野は、様々な補足的視点からこの理想にアプローチしてきたが、これまで、ほとんどのアプローチは、学習された潜在空間におけるすべての現実的な関心要素を効果的に分離するために、不特定または不十分に柔軟であることが証明されてきた。
そこで本研究では,フロー因子化表現学習(flow factorized representation learning)と呼ぶ構造表現学習の新たな視点を提案し,既存のフレームワークよりも効率的かつ有用な表現を学習できることを実証する。
具体的には、異なる入力変換を定義する潜在確率パスの異なる集合を特定する生成モデルを導入する。
各潜水流は、動的最適輸送に続く学習ポテンシャルの勾配場によって生成される。
我々の新しいセットアップは、 \textit{disentanglement} と \textit{equivariance} の両方に新しい理解をもたらす。
本モデルは,ほぼ同変モデルに近づきながら,標準表現学習ベンチマークにおいて高い確率を達成することを示す。
さらに,本モデルで学習した変換は柔軟に合成可能であり,新しいデータへの外挿も可能であり,有用に因子化された表現学習の最終的な目標に近づく頑健さと一般化性を示唆する。
関連論文リスト
- Disentanglement with Factor Quantized Variational Autoencoders [11.086500036180222]
本稿では,生成因子に関する基礎的真理情報をモデルに提供しない離散変分オートエンコーダ(VAE)モデルを提案する。
本研究では, 離散表現を学習する上で, 連続表現を学習することの利点を実証する。
FactorQVAEと呼ばれる手法は,最適化に基づく不整合アプローチと離散表現学習を組み合わせた最初の手法である。
論文 参考訳(メタデータ) (2024-09-23T09:33:53Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
マルチモーダルデータに特化して設計された統一因果モデルを提案する。
マルチモーダル・コントラスト表現学習は潜在結合変数の同定に優れていることを示す。
実験では、仮定が破られたとしても、我々の発見の堅牢性を示す。
論文 参考訳(メタデータ) (2024-02-09T07:18:06Z) - Latent Traversals in Generative Models as Potential Flows [113.4232528843775]
我々は,学習された動的ポテンシャルランドスケープを持つ潜在構造をモデル化することを提案する。
物理、最適輸送、神経科学にインスパイアされたこれらの潜在的景観は、物理的に現実的な偏微分方程式として学習される。
本手法は,最先端のベースラインよりも定性的かつ定量的に歪んだ軌跡を実現する。
論文 参考訳(メタデータ) (2023-04-25T15:53:45Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Robust and Controllable Object-Centric Learning through Energy-based
Models [95.68748828339059]
我々の研究は概念的にシンプルで一般的なアプローチであり、エネルギーベースモデルを通してオブジェクト中心の表現を学習する。
既存のアーキテクチャに容易に統合でき、高品質なオブジェクト中心表現を効果的に抽出できることを示す。
論文 参考訳(メタデータ) (2022-10-11T15:11:15Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Improving VAE-based Representation Learning [26.47244578124654]
優れた表現にはどのような特性が必要か,また異なるVAE構造選択が学習特性に与える影響について検討する。
ローカルな特徴を学習するデコーダを使用することで、残りのグローバルな特徴を潜伏者によってうまく捉えられることを示す。
論文 参考訳(メタデータ) (2022-05-28T23:00:18Z) - On Designing Good Representation Learning Models [22.25835082568234]
表現学習の目標は、意思決定のような機械学習の最終的な目的とは異なる。
表現学習モデルを訓練するための明確かつ直接的な目的を確立することは困難である。
論文 参考訳(メタデータ) (2021-07-13T09:39:43Z) - Self-Supervised Learning with Data Augmentations Provably Isolates
Content from Style [32.20957709045773]
我々は拡張過程を潜在変数モデルとして定式化する。
本研究では,2対の観測結果に基づいて,潜在表現の識別可能性について検討した。
Causal3DIdentは、因果関係が豊富な高次元、視覚的に複雑な画像のデータセットである。
論文 参考訳(メタデータ) (2021-06-08T18:18:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。