InfoVAEGAN : learning joint interpretable representations by information
maximization and maximum likelihood
- URL: http://arxiv.org/abs/2107.04705v1
- Date: Fri, 9 Jul 2021 22:38:10 GMT
- Title: InfoVAEGAN : learning joint interpretable representations by information
maximization and maximum likelihood
- Authors: Fei Ye and Adrian G. Bors
- Abstract summary: We propose a representation learning algorithm which combines the inference abilities of Variational Autoencoders (VAE) with the capability of Generative Adversarial Networks (GAN)
The proposed model, called InfoVAEGAN, consists of three networks:generative Generator and Discriminator.
- Score: 15.350366047108103
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Learning disentangled and interpretable representations is an important step
towards accomplishing comprehensive data representations on the manifold. In
this paper, we propose a novel representation learning algorithm which combines
the inference abilities of Variational Autoencoders (VAE) with the
generalization capability of Generative Adversarial Networks (GAN). The
proposed model, called InfoVAEGAN, consists of three networks~: Encoder,
Generator and Discriminator. InfoVAEGAN aims to jointly learn discrete and
continuous interpretable representations in an unsupervised manner by using two
different data-free log-likelihood functions onto the variables sampled from
the generator's distribution. We propose a two-stage algorithm for optimizing
the inference network separately from the generator training. Moreover, we
enforce the learning of interpretable representations through the maximization
of the mutual information between the existing latent variables and those
created through generative and inference processes.
Related papers
- Disentanglement with Factor Quantized Variational Autoencoders [11.086500036180222]
We propose a discrete variational autoencoder (VAE) based model where the ground truth information about the generative factors are not provided to the model.
We demonstrate the advantages of learning discrete representations over learning continuous representations in facilitating disentanglement.
Our method called FactorQVAE is the first method that combines optimization based disentanglement approaches with discrete representation learning.
arXiv Detail & Related papers (2024-09-23T09:33:53Z) - Flow Factorized Representation Learning [109.51947536586677]
We introduce a generative model which specifies a distinct set of latent probability paths that define different input transformations.
We show that our model achieves higher likelihoods on standard representation learning benchmarks while simultaneously being closer to approximately equivariant models.
arXiv Detail & Related papers (2023-09-22T20:15:37Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input.
We propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies.
arXiv Detail & Related papers (2023-08-07T12:26:34Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Interpretable Sentence Representation with Variational Autoencoders and
Attention [0.685316573653194]
We develop methods to enhance the interpretability of recent representation learning techniques in natural language processing (NLP)
We leverage Variational Autoencoders (VAEs) due to their efficiency in relating observations to latent generative factors.
We build two models with inductive bias to separate information in latent representations into understandable concepts without annotated data.
arXiv Detail & Related papers (2023-05-04T13:16:15Z) - The Transitive Information Theory and its Application to Deep Generative
Models [0.0]
Variational Autoencoder (VAE) could be pushed in two opposite directions.
Existing methods narrow the issues to the rate-distortion trade-off between compression and reconstruction.
We develop a system that learns a hierarchy of disentangled representation together with a mechanism for recombining the learned representation for generalization.
arXiv Detail & Related papers (2022-03-09T22:35:02Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Two-Level Adversarial Visual-Semantic Coupling for Generalized Zero-shot
Learning [21.89909688056478]
We propose a new two-level joint idea to augment the generative network with an inference network during training.
This provides strong cross-modal interaction for effective transfer of knowledge between visual and semantic domains.
We evaluate our approach on four benchmark datasets against several state-of-the-art methods, and show its performance.
arXiv Detail & Related papers (2020-07-15T15:34:09Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z) - Generalized Adversarially Learned Inference [42.40405470084505]
We develop methods of inference of latent variables in GANs by adversarially training an image generator along with an encoder to match two joint distributions of image and latent vector pairs.
We incorporate multiple layers of feedback on reconstructions, self-supervision, and other forms of supervision based on prior or learned knowledge about the desired solutions.
arXiv Detail & Related papers (2020-06-15T02:18:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.