論文の概要: Automated Graph Learning via Population Based Self-Tuning GCN
- arxiv url: http://arxiv.org/abs/2107.04713v1
- Date: Fri, 9 Jul 2021 23:05:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-13 16:11:41.584445
- Title: Automated Graph Learning via Population Based Self-Tuning GCN
- Title(参考訳): 人口ベースのセルフチューニングgcnによる自動グラフ学習
- Authors: Ronghang Zhu and Zhiqiang Tao and Yaliang Li and Sheng Li
- Abstract要約: グラフ畳み込みネットワーク(GCN)とその変種は、幅広いタスクにうまく適用されている。
従来のGCNモデルはオーバーフィッティングとオーバースムーシングの問題に悩まされている。
DropEdgeのような最近の技術はこれらの問題を緩和し、ディープGCNの開発を可能にする。
- 参考スコア(独自算出の注目度): 45.28411311903644
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Owing to the remarkable capability of extracting effective graph embeddings,
graph convolutional network (GCN) and its variants have been successfully
applied to a broad range of tasks, such as node classification, link
prediction, and graph classification. Traditional GCN models suffer from the
issues of overfitting and oversmoothing, while some recent techniques like
DropEdge could alleviate these issues and thus enable the development of deep
GCN. However, training GCN models is non-trivial, as it is sensitive to the
choice of hyperparameters such as dropout rate and learning weight decay,
especially for deep GCN models. In this paper, we aim to automate the training
of GCN models through hyperparameter optimization. To be specific, we propose a
self-tuning GCN approach with an alternate training algorithm, and further
extend our approach by incorporating the population based training scheme.
Experimental results on three benchmark datasets demonstrate the effectiveness
of our approaches on optimizing multi-layer GCN, compared with several
representative baselines.
- Abstract(参考訳): 効率的なグラフ埋め込みを抽出する顕著な能力のため、グラフ畳み込みネットワーク(GCN)とその変種は、ノード分類、リンク予測、グラフ分類といった幅広いタスクにうまく適用されている。
従来のGCNモデルはオーバーフィッティングとオーバースムーシングの問題に悩まされており、DropEdgeのような最近の技術はこれらの問題を緩和し、ディープGCNの開発を可能にする。
しかし、GCNモデルのトレーニングは、特に深いGCNモデルにおいて、ドロップアウト率や学習重量減少などのハイパーパラメータの選択に敏感であるため、簡単ではない。
本稿では,ハイパーパラメータ最適化によりGCNモデルのトレーニングを自動化することを目的とする。
具体的には、代替トレーニングアルゴリズムを用いた自己学習型GCNアプローチを提案し、人口ベーストレーニングスキームを取り入れたアプローチをさらに拡張する。
3つのベンチマークデータセットの実験結果から,複数の代表的ベースラインと比較して,多層GCNの最適化におけるアプローチの有効性が示された。
関連論文リスト
- Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
グラフニューラルネットワーク(GNN)は、機械学習における分類タスクの顕著なツールとして登場した。
本稿では,GNNとアテンション機構を統合し,ネットワークローカライゼーションという難解な非線形回帰問題に対処する。
我々はまず,厳密な非視線(NLOS)条件下でも例外的な精度を示すグラフ畳み込みネットワーク(GCN)に基づく新しいネットワークローカライゼーション手法を提案する。
論文 参考訳(メタデータ) (2023-11-28T15:05:13Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - Neighborhood Convolutional Network: A New Paradigm of Graph Neural
Networks for Node Classification [12.062421384484812]
グラフ畳み込みネットワーク(GCN)は、各畳み込み層における近傍の集約と特徴変換を分離する。
本稿では,周辺畳み込みネットワーク(NCN)と呼ばれるGCNの新しいパラダイムを提案する。
このようにして、モデルは、近隣情報を集約するための分離GCNの利点を継承すると同時に、より強力な特徴学習モジュールを開発することができる。
論文 参考訳(メタデータ) (2022-11-15T02:02:51Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Multi-scale Graph Convolutional Networks with Self-Attention [2.66512000865131]
グラフ畳み込みネットワーク(GCN)は,様々なグラフ構造データを扱うための優れた学習能力を実現している。
GCNsの重要な問題として, 過平滑化現象が解決され, 検討が続けられている。
本稿では,GCNの設計に自己認識機構とマルチスケール情報を取り入れた2つの新しいマルチスケールGCNフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-04T04:41:24Z) - SStaGCN: Simplified stacking based graph convolutional networks [2.556756699768804]
グラフ畳み込みネットワーク(GCN)は、様々なグラフ構造データ学習タスクにおいて広く研究されている強力なモデルである。
本稿では, SStaGCN (Simplified stacking based GCN) と呼ばれる新しいGCNを提案する。
SStaGCNはGCNの過密問題を効果的に軽減できることを示す。
論文 参考訳(メタデータ) (2021-11-16T05:00:08Z) - AdaGCN:Adaptive Boosting Algorithm for Graph Convolutional Networks on
Imbalanced Node Classification [10.72543417177307]
AdaGCNと呼ばれるアンサンブルモデルを提案する。このモデルでは,アダプティブ・ブーピング時のベース推定にグラフ畳み込みネットワーク(GCN)を用いる。
我々のモデルは、考慮すべきノード分類タスクのすべてにおいて、最先端のベースラインも改善します。
論文 参考訳(メタデータ) (2021-05-25T02:43:31Z) - Simple and Deep Graph Convolutional Networks [63.76221532439285]
グラフ畳み込みネットワーク(GCN)は、グラフ構造化データに対する強力なディープラーニングアプローチである。
その成功にもかかわらず、現在のGCNモデルは、エムの過度に滑らかな問題のため、ほとんどが浅くなっている。
本稿では,2つの単純かつ効果的な手法を用いて,バニラGCNモデルを拡張したGCNIIを提案する。
論文 参考訳(メタデータ) (2020-07-04T16:18:06Z) - DeeperGCN: All You Need to Train Deeper GCNs [66.64739331859226]
グラフ畳み込みネットワーク(GCN)はグラフ上での表現学習の力で注目されている。
非常に深いレイヤを積み重ねることのできる畳み込みニューラルネットワーク(CNN)とは異なり、GCNはより深く進むと、勾配の消失、過度なスムース化、過度に適合する問題に悩まされる。
本稿では,非常に深いGCNを正常かつ確実に訓練できるDeeperGCNを提案する。
論文 参考訳(メタデータ) (2020-06-13T23:00:22Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network(GCN)は,グラフデータの学習と推論を行う新興技術である。
我々は、GCNの既存の設計がクロスフィーチャをモデリングし、クロスフィーチャが重要であるタスクやデータに対してGCNの効率を損なうことを論じている。
我々は、任意の次交叉特徴を、特徴次元と順序サイズに線形に複雑にモデル化した、クロスフィーチャーグラフ畳み込みという新しい演算子を設計する。
論文 参考訳(メタデータ) (2020-03-05T13:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。