論文の概要: SStaGCN: Simplified stacking based graph convolutional networks
- arxiv url: http://arxiv.org/abs/2111.08228v1
- Date: Tue, 16 Nov 2021 05:00:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-17 13:46:44.983960
- Title: SStaGCN: Simplified stacking based graph convolutional networks
- Title(参考訳): SStaGCN: 単純なスタック化に基づくグラフ畳み込みネットワーク
- Authors: Jia Cai, Zhilong Xiong, Shaogao Lv
- Abstract要約: グラフ畳み込みネットワーク(GCN)は、様々なグラフ構造データ学習タスクにおいて広く研究されている強力なモデルである。
本稿では, SStaGCN (Simplified stacking based GCN) と呼ばれる新しいGCNを提案する。
SStaGCNはGCNの過密問題を効果的に軽減できることを示す。
- 参考スコア(独自算出の注目度): 2.556756699768804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional network (GCN) is a powerful model studied broadly in
various graph structural data learning tasks. However, to mitigate the
over-smoothing phenomenon, and deal with heterogeneous graph structural data,
the design of GCN model remains a crucial issue to be investigated. In this
paper, we propose a novel GCN called SStaGCN (Simplified stacking based GCN) by
utilizing the ideas of stacking and aggregation, which is an adaptive general
framework for tackling heterogeneous graph data. Specifically, we first use the
base models of stacking to extract the node features of a graph. Subsequently,
aggregation methods such as mean, attention and voting techniques are employed
to further enhance the ability of node features extraction. Thereafter, the
node features are considered as inputs and fed into vanilla GCN model.
Furthermore, theoretical generalization bound analysis of the proposed model is
explicitly given. Extensive experiments on $3$ public citation networks and
another $3$ heterogeneous tabular data demonstrate the effectiveness and
efficiency of the proposed approach over state-of-the-art GCNs. Notably, the
proposed SStaGCN can efficiently mitigate the over-smoothing problem of GCN.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は、様々なグラフ構造データ学習タスクにおいて広く研究されている強力なモデルである。
しかし, 過飽和現象を緩和し, 異種グラフ構造データを扱うため, gcnモデルの設計は依然として検討すべき重要な課題である。
本稿では,ヘテロジニアスグラフデータを扱うための適応型汎用フレームワークであるスタックリングとアグリゲーションのアイデアを活用することで,SStaGCN(Simplified stacking based GCN)と呼ばれる新しいGCNを提案する。
具体的には、まずスタックのベースモデルを使用して、グラフのノード特徴を抽出する。
その後,ノードの特徴抽出能力を高めるために,平均,注意,投票手法などの集約手法が採用された。
その後、ノード機能は入力と見なされ、バニラgcnモデルに供給される。
さらに、提案モデルの理論的一般化境界解析を明示的に与える。
3ドルの公開引用ネットワークとさらに3ドルの不均一な表データに関する広範囲な実験は、最先端のgcnに対する提案手法の有効性と効率を示している。
特に,提案したSStaGCNはGCNの過密問題を効率的に緩和することができる。
関連論文リスト
- Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
グラフ構造化データの表現学習では、多くの人気のあるグラフニューラルネットワーク(GNN)が長距離依存をキャプチャできない。
本稿では,自己注意型グラフ畳み込みネットワーク(GCN-SA)と呼ばれる新しいグラフ学習フレームワークを提案する。
提案手法はノードレベルの表現学習において例外的な一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-06T05:00:31Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Multi-scale Graph Convolutional Networks with Self-Attention [2.66512000865131]
グラフ畳み込みネットワーク(GCN)は,様々なグラフ構造データを扱うための優れた学習能力を実現している。
GCNsの重要な問題として, 過平滑化現象が解決され, 検討が続けられている。
本稿では,GCNの設計に自己認識機構とマルチスケール情報を取り入れた2つの新しいマルチスケールGCNフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-04T04:41:24Z) - SPAGAN: Shortest Path Graph Attention Network [187.75441278910708]
グラフ畳み込みネットワーク(GCN)は最近、グラフとして表現できる非グリッド構造データを分析する可能性を示した。
本研究では,SPAGAN (Shortest Path Graph Attention Network) と呼ばれる新しいGCNモデルを提案する。
論文 参考訳(メタデータ) (2021-01-10T03:18:34Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z) - Simple and Deep Graph Convolutional Networks [63.76221532439285]
グラフ畳み込みネットワーク(GCN)は、グラフ構造化データに対する強力なディープラーニングアプローチである。
その成功にもかかわらず、現在のGCNモデルは、エムの過度に滑らかな問題のため、ほとんどが浅くなっている。
本稿では,2つの単純かつ効果的な手法を用いて,バニラGCNモデルを拡張したGCNIIを提案する。
論文 参考訳(メタデータ) (2020-07-04T16:18:06Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
本稿では,知識埋め込みに基づくグラフ畳み込みネットワーク(KE-GCN)という新しいフレームワークを提案する。
KE-GCNはグラフベースの信念伝播におけるグラフ畳み込みネットワーク(GCN)のパワーと高度な知識埋め込み手法の強みを組み合わせたものである。
理論的解析により、KE-GCNはいくつかのよく知られたGCN法のエレガントな統一を具体例として示している。
論文 参考訳(メタデータ) (2020-06-12T17:12:51Z) - Scattering GCN: Overcoming Oversmoothness in Graph Convolutional
Networks [0.0]
グラフ畳み込みネットワーク(GCN)は,構造認識の特徴を抽出することによって,グラフデータ処理において有望な結果を示した。
本稿では、幾何学的散乱変換と残差畳み込みによる従来のGCNの増大を提案する。
前者はグラフ信号の帯域通過フィルタリングが可能であり、GCNでしばしば発生する過度な過度な処理を緩和する。
論文 参考訳(メタデータ) (2020-03-18T18:03:08Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network(GCN)は,グラフデータの学習と推論を行う新興技術である。
我々は、GCNの既存の設計がクロスフィーチャをモデリングし、クロスフィーチャが重要であるタスクやデータに対してGCNの効率を損なうことを論じている。
我々は、任意の次交叉特徴を、特徴次元と順序サイズに線形に複雑にモデル化した、クロスフィーチャーグラフ畳み込みという新しい演算子を設計する。
論文 参考訳(メタデータ) (2020-03-05T13:05:27Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
LPAとGCNの関係を特徴・ラベルの平滑化と特徴・ラベルの影響の2点の観点から検討した。
理論解析に基づいて,ノード分類のためのGCNとLCAを統一するエンドツーエンドモデルを提案する。
我々のモデルは、既存の特徴に基づく注目モデルよりもタスク指向のノードラベルに基づく学習注意重みと見なすこともできる。
論文 参考訳(メタデータ) (2020-02-17T03:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。