Long range magnetic dipole-dipole interaction mediated by a
superconductor
- URL: http://arxiv.org/abs/2107.05130v1
- Date: Sun, 11 Jul 2021 21:16:29 GMT
- Title: Long range magnetic dipole-dipole interaction mediated by a
superconductor
- Authors: Yoav Romach, Tal Wasserman, Shai Tishby, Nir Bar-Gill
- Abstract summary: Quantum computation and simulation requires strong coherent coupling between qubits, which may be spatially separated.
Here we theoretically investigate a method for achieving such coupling, based on superconducting nano-structures designed to channel the magnetic flux created by the qubits.
We show that such structures could channel the magnetic flux, enhancing the dipole-dipole interaction between spin qubits and changing its scaling with distance, thus potentially paving the way for controllably engineering an interacting spin system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computation and simulation requires strong coherent coupling between
qubits, which may be spatially separated. Achieving this coupling for
solid-state based spin qubits is a long-standing challenge. Here we
theoretically investigate a method for achieving such coupling, based on
superconducting nano-structures designed to channel the magnetic flux created
by the qubits. We detail semi-classical analytical calculations and simulations
of the magnetic field created by a magnetic dipole, depicting the spin qubit,
positioned directly below nanofabricated apertures in a superconducting layer.
We show that such structures could channel the magnetic flux, enhancing the
dipole-dipole interaction between spin qubits and changing its scaling with
distance, thus potentially paving the way for controllably engineering an
interacting spin system.
Related papers
- Methods for transverse and longitudinal spin-photon coupling in silicon
quantum dots with intrinsic spin-orbit effect [0.32301042014102566]
This paper examines the theory of both transverse and longitudinal spin-photon coupling.
We propose a method of coupling which uses the intrinsic spin-orbit interaction arising from orbital degeneracies in SiMOS qubits.
We also evaluate the feasibility of a longitudinal coupling driven by an AC modulation on the qubit.
arXiv Detail & Related papers (2023-08-24T08:04:28Z) - Strong tunable coupling between two distant superconducting spin qubits [3.2422448552678254]
Superconducting (or Andreev) spin qubits have emerged as an alternative qubit platform.
In this work, we demonstrate a strong supercurrent-mediated coupling between two distant Andreev spin qubits.
arXiv Detail & Related papers (2023-07-28T16:30:48Z) - Chiral coupling between a ferromagnetic magnon and a superconducting
qubit [0.0]
Chiral coupling at the single-quantum level promises to be a remarkable potential for quantum information processing.
We propose to achieve a chiral interaction between a magnon mode in a ferromagnetic sphere and a superconducting qubit mediated by a one-dimensional coupled-cavity array.
arXiv Detail & Related papers (2022-11-10T01:34:10Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Spin-helical detection in a semiconductor quantum device with
ferromagnetic contacts [0.024171019220503395]
We show that it is possible to detect helical modes with high sensitivity even in the presence of realistic device effects, such as quantum interference.
Our results are of interest not only for the ongoing development of Majorana qubits, but also as for realizing possible spin-based quantum devices.
arXiv Detail & Related papers (2021-04-07T03:18:53Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Spin emitters beyond the point dipole approximation in nanomagnonic
cavities [0.0]
Control over transition rates between spin states of emitters is crucial in a variety of fields ranging from quantum information science to the nanochemistry of free radicals.
We present an approach to drive a both electric and magnetic dipole-forbidden transition of a spin emitter by placing it in a nanomagnonic cavity.
arXiv Detail & Related papers (2020-12-08T19:00:02Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.