TransClaw U-Net: Claw U-Net with Transformers for Medical Image
Segmentation
- URL: http://arxiv.org/abs/2107.05188v1
- Date: Mon, 12 Jul 2021 04:17:39 GMT
- Title: TransClaw U-Net: Claw U-Net with Transformers for Medical Image
Segmentation
- Authors: Yao Chang, Hu Menghan, Zhai Guangtao, Zhang Xiao-Ping
- Abstract summary: We propose a TransClaw U-Net network structure, which combines the convolution operation with the transformer operation in the encoding part.
Results show that the performance of TransClaw U-Net is better than other network structures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, computer-aided diagnosis has become an increasingly popular
topic. Methods based on convolutional neural networks have achieved good
performance in medical image segmentation and classification. Due to the
limitations of the convolution operation, the long-term spatial features are
often not accurately obtained. Hence, we propose a TransClaw U-Net network
structure, which combines the convolution operation with the transformer
operation in the encoding part. The convolution part is applied for extracting
the shallow spatial features to facilitate the recovery of the image resolution
after upsampling. The transformer part is used to encode the patches, and the
self-attention mechanism is used to obtain global information between
sequences. The decoding part retains the bottom upsampling structure for better
detail segmentation performance. The experimental results on Synapse
Multi-organ Segmentation Datasets show that the performance of TransClaw U-Net
is better than other network structures. The ablation experiments also prove
the generalization performance of TransClaw U-Net.
Related papers
- TransUKAN:Computing-Efficient Hybrid KAN-Transformer for Enhanced Medical Image Segmentation [5.280523424712006]
U-Net is currently the most widely used architecture for medical image segmentation.
We have improved the KAN to reduce memory usage and computational load.
This approach enhances the model's capability to capture nonlinear relationships.
arXiv Detail & Related papers (2024-09-23T02:52:49Z) - ParaTransCNN: Parallelized TransCNN Encoder for Medical Image
Segmentation [7.955518153976858]
We propose an advanced 2D feature extraction method by combining the convolutional neural network and Transformer architectures.
Our method is shown with better segmentation accuracy, especially on small organs.
arXiv Detail & Related papers (2024-01-27T05:58:36Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - nnFormer: Interleaved Transformer for Volumetric Segmentation [50.10441845967601]
We introduce nnFormer, a powerful segmentation model with an interleaved architecture based on empirical combination of self-attention and convolution.
nnFormer achieves tremendous improvements over previous transformer-based methods on two commonly used datasets Synapse and ACDC.
arXiv Detail & Related papers (2021-09-07T17:08:24Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unet is an Unet-like pure Transformer for medical image segmentation.
tokenized image patches are fed into the Transformer-based U-shaped decoder-Decoder architecture.
arXiv Detail & Related papers (2021-05-12T09:30:26Z) - UNETR: Transformers for 3D Medical Image Segmentation [8.59571749685388]
We introduce a novel architecture, dubbed as UNEt TRansformers (UNETR), that utilizes a pure transformer as the encoder to learn sequence representations of the input volume.
We have extensively validated the performance of our proposed model across different imaging modalities.
arXiv Detail & Related papers (2021-03-18T20:17:15Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers [149.78470371525754]
We treat semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer to encode an image as a sequence of patches.
With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR)
SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes.
arXiv Detail & Related papers (2020-12-31T18:55:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.