Legal Judgment Prediction with Multi-Stage CaseRepresentation Learning
in the Real Court Setting
- URL: http://arxiv.org/abs/2107.05192v1
- Date: Mon, 12 Jul 2021 04:27:14 GMT
- Title: Legal Judgment Prediction with Multi-Stage CaseRepresentation Learning
in the Real Court Setting
- Authors: Luyao Ma, Yating Zhang, Tianyi Wang, Xiaozhong Liu, Wei Ye, Changlong
Sun, Shikun Zhang
- Abstract summary: We introduce a novel dataset from real courtrooms to predict the legal judgment in a reasonably encyclopedic manner.
An extensive set of experiments with a large civil trial data set shows that the proposed model can more accurately characterize the interactions among claims, fact and debate for legal judgment prediction.
- Score: 25.53133777558123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Legal judgment prediction(LJP) is an essential task for legal AI. While prior
methods studied on this topic in a pseudo setting by employing the
judge-summarized case narrative as the input to predict the judgment,
neglecting critical case life-cycle information in real court setting could
threaten the case logic representation quality and prediction correctness. In
this paper, we introduce a novel challenging dataset from real courtrooms to
predict the legal judgment in a reasonably encyclopedic manner by leveraging
the genuine input of the case -- plaintiff's claims and court debate data, from
which the case's facts are automatically recognized by comprehensively
understanding the multi-role dialogues of the court debate, and then learnt to
discriminate the claims so as to reach the final judgment through multi-task
learning. An extensive set of experiments with a large civil trial data set
shows that the proposed model can more accurately characterize the interactions
among claims, fact and debate for legal judgment prediction, achieving
significant improvements over strong state-of-the-art baselines. Moreover, the
user study conducted with real judges and law school students shows the neural
predictions can also be interpretable and easily observed, and thus enhancing
the trial efficiency and judgment quality.
Related papers
- LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
We introduce the Law Large Language Model (LawLLM), a multi-task model specifically designed for the US legal domain.
LawLLM excels at Similar Case Retrieval (SCR), Precedent Case Recommendation (PCR), and Legal Judgment Prediction (LJP)
We propose customized data preprocessing techniques for each task that transform raw legal data into a trainable format.
arXiv Detail & Related papers (2024-07-27T21:51:30Z) - Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
We introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspired by human reasoning.
ADAPT involves decomposing case facts, discriminating among potential charges, and predicting the final judgment.
Experiments conducted on two widely-used datasets demonstrate the superior performance of our framework in legal judgment prediction.
arXiv Detail & Related papers (2024-07-02T05:43:15Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [18.058942674792604]
We propose a novel few-shot workflow tailored to the relevant judgment of legal cases.
By comparing the relevance judgments of LLMs and human experts, we empirically show that we can obtain reliable relevance judgments.
arXiv Detail & Related papers (2024-03-27T09:46:56Z) - Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning [49.23103067844278]
We propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases.
Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation.
arXiv Detail & Related papers (2023-12-10T04:46:30Z) - Prototype-Based Interpretability for Legal Citation Prediction [16.660004925391842]
We design the task with parallels to the thought-process of lawyers, i.e., with reference to both precedents and legislative provisions.
After initial experimental results, we refine the target citation predictions with the feedback of legal experts.
We introduce a prototype architecture to add interpretability, achieving strong performance while adhering to decision parameters used by lawyers.
arXiv Detail & Related papers (2023-05-25T21:40:58Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo)
We simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups.
We employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency.
arXiv Detail & Related papers (2021-03-25T14:28:00Z) - Distinguish Confusing Law Articles for Legal Judgment Prediction [30.083642130015317]
Legal Judgment Prediction (LJP) is the task of automatically predicting a law case's judgment results given a text describing its facts.
We present an end-to-end model, LADAN, to solve the task of LJP.
arXiv Detail & Related papers (2020-04-06T11:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.