A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences
- URL: http://arxiv.org/abs/2503.00841v1
- Date: Sun, 02 Mar 2025 10:26:54 GMT
- Title: A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences
- Authors: Jiaxin Shen, Jinan Xu, Huiqi Hu, Luyi Lin, Fei Zheng, Guoyang Ma, Fandong Meng, Jie Zhou, Wenjuan Han,
- Abstract summary: We propose a transparent law reasoning schema enriched with hierarchical factum probandum, evidence, and implicit experience.<n>Inspired by this schema, we introduce the challenging task, which takes a textual case description and outputs a hierarchical structure justifying the final decision.<n>This benchmark paves the way for transparent and accountable AI-assisted law reasoning in the Intelligent Court''
- Score: 76.73731245899454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While progress has been made in legal applications, law reasoning, crucial for fair adjudication, remains unexplored. We propose a transparent law reasoning schema enriched with hierarchical factum probandum, evidence, and implicit experience, enabling public scrutiny and preventing bias. Inspired by this schema, we introduce the challenging task, which takes a textual case description and outputs a hierarchical structure justifying the final decision. We also create the first crowd-sourced dataset for this task, enabling comprehensive evaluation. Simultaneously, we propose an agent framework that employs a comprehensive suite of legal analysis tools to address the challenge task. This benchmark paves the way for transparent and accountable AI-assisted law reasoning in the ``Intelligent Court''.
Related papers
- AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLaw is a first-of-its-kind dataset of 471 meticulously annotated U.S. Appeals Court negligence cases.<n>Our dataset lays the groundwork for more human-aligned, explainable Legal Judgment Prediction models.<n>Results demonstrate that LJP remains a formidable task, with application of legal precedent proving particularly difficult.
arXiv Detail & Related papers (2025-02-28T19:14:48Z) - How Vital is the Jurisprudential Relevance: Law Article Intervened Legal Case Retrieval and Matching [31.378981566988063]
Legal case retrieval (LCR) aims to automatically scour for comparable legal cases based on a given query.<n>To address them, a daunting challenge is assessing the uniquely defined legal-rational similarity within the judicial domain.<n>We propose an end-to-end model named LCM-LAI to solve the above challenges.
arXiv Detail & Related papers (2025-02-25T15:29:07Z) - CoPERLex: Content Planning with Event-based Representations for Legal Case Summarization [1.3723120574076126]
Legal professionals often struggle with lengthy judgments and require efficient summarization for quick comprehension.
We propose our framework, CoPERLex, which operates in three stages: first, it performs content selection to identify crucial information from the judgment.
Second, the selected content is utilized to generate intermediate plans through event-centric representations modeled as Subject-VerbObjects.
Third, it generates coherent summaries on both the content and the structured plan.
arXiv Detail & Related papers (2025-01-23T22:03:45Z) - Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
We introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspired by human reasoning.
ADAPT involves decomposing case facts, discriminating among potential charges, and predicting the final judgment.
Experiments conducted on two widely-used datasets demonstrate the superior performance of our framework in legal judgment prediction.
arXiv Detail & Related papers (2024-07-02T05:43:15Z) - Empowering Prior to Court Legal Analysis: A Transparent and Accessible Dataset for Defensive Statement Classification and Interpretation [5.646219481667151]
This paper introduces a novel dataset tailored for classification of statements made during police interviews, prior to court proceedings.
We introduce a fine-tuned DistilBERT model that achieves state-of-the-art performance in distinguishing truthful from deceptive statements.
We also present an XAI interface that empowers both legal professionals and non-specialists to interact with and benefit from our system.
arXiv Detail & Related papers (2024-05-17T11:22:27Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - MUSER: A Multi-View Similar Case Retrieval Dataset [65.36779942237357]
Similar case retrieval (SCR) is a representative legal AI application that plays a pivotal role in promoting judicial fairness.
Existing SCR datasets only focus on the fact description section when judging the similarity between cases.
We present M, a similar case retrieval dataset based on multi-view similarity measurement and comprehensive legal element with sentence-level legal element annotations.
arXiv Detail & Related papers (2023-10-24T08:17:11Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - From LSAT: The Progress and Challenges of Complex Reasoning [56.07448735248901]
We study the three challenging and domain-general tasks of the Law School Admission Test (LSAT), including analytical reasoning, logical reasoning and reading comprehension.
We propose a hybrid reasoning system to integrate these three tasks and achieve impressive overall performance on the LSAT tests.
arXiv Detail & Related papers (2021-08-02T05:43:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.