論文の概要: Delta Sampling R-BERT for limited data and low-light action recognition
- arxiv url: http://arxiv.org/abs/2107.05202v1
- Date: Mon, 12 Jul 2021 05:35:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-13 22:59:51.895552
- Title: Delta Sampling R-BERT for limited data and low-light action recognition
- Title(参考訳): 限られたデータと低照度動作認識のためのデルタサンプリングR-BERT
- Authors: Sanchit Hira, Ritwik Das, Abhinav Modi, Daniil Pakhomov
- Abstract要約: 暗黒空間において教師あり行動認識を行う手法を提案する。
私たちは、より小さなダークビデオのデータセットでトレーニングしながら、非常に低いエラー率を達成することができることを実証しています。
- 参考スコア(独自算出の注目度): 0.04915744683251149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an approach to perform supervised action recognition in the dark.
In this work, we present our results on the ARID dataset. Most previous works
only evaluate performance on large, well illuminated datasets like Kinetics and
HMDB51. We demonstrate that our work is able to achieve a very low error rate
while being trained on a much smaller dataset of dark videos. We also explore a
variety of training and inference strategies including domain transfer
methodologies and also propose a simple but useful frame selection strategy.
Our empirical results demonstrate that we beat previously published baseline
models by 11%.
- Abstract(参考訳): 暗黒空間において教師あり行動認識を行う手法を提案する。
本稿では,aridデータセット上での結果を紹介する。
これまでのほとんどの研究は、KineticsやHMDB51のような大きく照らされたデータセットでのみ性能を評価する。
私たちの研究は、暗いビデオのデータセットでトレーニングしながら、非常に低いエラー率を達成できることを示しています。
また、ドメイン転送手法を含む様々なトレーニングおよび推論戦略についても検討し、簡易かつ有用なフレーム選択戦略を提案する。
実験の結果,これまでに公表したベースラインモデルを11%上回った。
関連論文リスト
- Adaptive Masking Enhances Visual Grounding [12.793586888511978]
ローショット学習シナリオにおける語彙接地を改善するために,ガウス放射変調を用いた画像解釈型マスキングを提案する。
我々はCOCOやODinWを含むベンチマークデータセットに対するアプローチの有効性を評価し、ゼロショットタスクや少数ショットタスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-04T05:48:02Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Multi-dataset Training of Transformers for Robust Action Recognition [75.5695991766902]
動作認識のための複数のデータセットをうまく一般化することを目的として,ロバストな特徴表現の課題について検討する。
本稿では、情報損失と投影損失という2つの新しい損失項を設計した、新しいマルチデータセットトレーニングパラダイムであるMultiTrainを提案する。
本研究では,Kineetics-400,Kineetics-700,Moments-in-Time,Activitynet,Some-something-v2の5つの課題データセットに対して,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-09-26T01:30:43Z) - Explored An Effective Methodology for Fine-Grained Snake Recognition [8.908667065576632]
我々は,様々なメタ情報を活用し,きめ細かい識別を支援するために,強力なマルチモーダルバックボーンを設計する。
ラベルのないデータセットを最大限に活用するために,自己教師付き学習と教師付き学習共同学習を用いる。
本手法は,個人用および公開用データセットにおいて,それぞれ92.7%,89.4%のマクロf1スコアを達成できる。
論文 参考訳(メタデータ) (2022-07-24T02:19:15Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Deep Features for CBIR with Scarce Data using Hebbian Learning [17.57322804741561]
本研究では,コンテンツベース画像検索(CBIR)タスクのための特徴抽出器の開発において,生物学的にインスピレーションを得たテキストHebbian学習アルゴリズムの性能について検討する。
具体的には、まず、教師なし事前学習段階、次に、画像データセット上でネットワークを微調整する2つのステップで、半教師付き学習戦略を考察する。
論文 参考訳(メタデータ) (2022-05-18T14:00:54Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
弱教師付き有色物体検出(WSOD)は,画像レベルのアノテーションを用いた有色度モデルの開発を目的としている。
擬似ラベルとネットワーク予測の相互校正ループを明確に設定し,自己校正学習戦略を提案する。
十分に整合したアノテーションを持つはるかに小さなデータセットであっても、モデルがより優れたパフォーマンスと一般化性を達成するのに役立ちます。
論文 参考訳(メタデータ) (2021-09-04T02:45:22Z) - BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information
Retrieval Models [41.45240621979654]
情報検索のための異種ベンチマークであるBEIRを紹介する。
ゼロショット評価設定における9つの最先端の検索モデルの有効性を検討する。
Dense-Retrievalモデルは計算効率が良いが、他のアプローチでは性能が劣ることが多い。
論文 参考訳(メタデータ) (2021-04-17T23:29:55Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - GridMask Data Augmentation [76.79300104795966]
本稿では,新しいデータ拡張手法であるGridMaskを提案する。
情報除去を利用して、様々なコンピュータビジョンタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2020-01-13T07:27:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。