Improving the Algorithm of Deep Learning with Differential Privacy
- URL: http://arxiv.org/abs/2107.05457v1
- Date: Mon, 12 Jul 2021 14:28:12 GMT
- Title: Improving the Algorithm of Deep Learning with Differential Privacy
- Authors: Mehdi Amian
- Abstract summary: An adjustment to the original differentially private gradient descent (DPSGD) algorithm for deep learning models is proposed.
The idea is natural and interpretable, contributing to improve the utility with respect to the state-of-the-art.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, an adjustment to the original differentially private
stochastic gradient descent (DPSGD) algorithm for deep learning models is
proposed. As a matter of motivation, to date, almost no state-of-the-art
machine learning algorithm hires the existing privacy protecting components due
to otherwise serious compromise in their utility despite the vital necessity.
The idea in this study is natural and interpretable, contributing to improve
the utility with respect to the state-of-the-art. Another property of the
proposed technique is its simplicity which makes it again more natural and also
more appropriate for real world and specially commercial applications. The
intuition is to trim and balance out wild individual discrepancies for privacy
reasons, and at the same time, to preserve relative individual differences for
seeking performance. The idea proposed here can also be applied to the
recurrent neural networks (RNN) to solve the gradient exploding problem. The
algorithm is applied to benchmark datasets MNIST and CIFAR-10 for a
classification task and the utility measure is calculated. The results
outperformed the original work.
Related papers
- Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
User-level differentially private convex optimization (DP-SCO) has garnered significant attention due to the importance of safeguarding user privacy in machine learning applications.
Current methods, such as those based on differentially private gradient descent (DP-SGD), often struggle with high noise accumulation and suboptimal utility.
We introduce a novel linear-time algorithm that leverages robust statistics, specifically the median and trimmed mean, to overcome these challenges.
arXiv Detail & Related papers (2025-02-13T02:05:45Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Forward-Forward Algorithm for Hyperspectral Image Classification: A
Preliminary Study [0.0]
Forward-forward algorithm (FFA) computes local goodness functions to optimize network parameters.
This study investigates the application of FFA for hyperspectral image classification.
arXiv Detail & Related papers (2023-07-01T05:39:28Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Differentially Private Learning with Per-Sample Adaptive Clipping [8.401653565794353]
We propose a Differentially Private Per-Sample Adaptive Clipping (DP-PSAC) algorithm based on a non-monotonic adaptive weight function.
We show that DP-PSAC outperforms or matches the state-of-the-art methods on multiple main-stream vision and language tasks.
arXiv Detail & Related papers (2022-12-01T07:26:49Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - Tempered Sigmoid Activations for Deep Learning with Differential Privacy [33.574715000662316]
We show that the choice of activation function is central to bounding the sensitivity of privacy-preserving deep learning.
We achieve new state-of-the-art accuracy on MNIST, FashionMNIST, and CIFAR10 without any modification of the learning procedure fundamentals.
arXiv Detail & Related papers (2020-07-28T13:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.