論文の概要: Stress Classification and Personalization: Getting the most out of the
least
- arxiv url: http://arxiv.org/abs/2107.05666v1
- Date: Mon, 12 Jul 2021 18:14:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-15 04:31:36.548208
- Title: Stress Classification and Personalization: Getting the most out of the
least
- Title(参考訳): ストレス分類とパーソナライゼーション: 最少を最大限に活用する
- Authors: Ramesh Kumar Sah and Hassan Ghasemzadeh
- Abstract要約: 本稿では,新しい畳み込みニューラルネットワーク(CNN)を用いたストレス検出・分類フレームワークを提案する。
我々の手法は競争力があり、現在の最先端技術よりも優れています。
- 参考スコア(独自算出の注目度): 18.528929583956725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stress detection and monitoring is an active area of research with important
implications for the personal, professional, and social health of an
individual. Current approaches for affective state classification use
traditional machine learning algorithms with features computed from multiple
sensor modalities. These methods are data-intensive and rely on hand-crafted
features which impede the practical applicability of these sensor systems in
daily lives. To overcome these shortcomings, we propose a novel Convolutional
Neural Network (CNN) based stress detection and classification framework
without any feature computation using data from only one sensor modality. Our
method is competitive and outperforms current state-of-the-art techniques and
achieves a classification accuracy of $92.85\%$ and an $f1$ score of $0.89$.
Through our leave-one-subject-out analysis, we also show the importance of
personalizing stress models.
- Abstract(参考訳): ストレス検出とモニタリングは、個人の個人的、専門的、社会的健康に重要な意味を持つ研究の活発な領域である。
情緒的状態分類の現在のアプローチは、複数のセンサモダリティから計算される特徴を持つ従来の機械学習アルゴリズムを使用する。
これらの方法は、データ集約型であり、日常生活におけるセンサーシステムの実用性を阻害する手作りの機能に依存している。
これらの欠点を克服するために,1つのセンサモードのみのデータを用いて特徴計算を行うことなく,新しい畳み込みニューラルネットワーク(CNN)に基づくストレス検出・分類フレームワークを提案する。
我々の手法は競争力があり、最先端技術よりも優れており、分類精度は92.85 %$、スコアは0.89$である。
その結果,ストレスモデルのパーソナライズの重要性が示唆された。
関連論文リスト
- Enhancing Performance and User Engagement in Everyday Stress Monitoring: A Context-Aware Active Reinforcement Learning Approach [4.132425356039815]
本稿では,スマートウォッチとスマートフォンのコンテキストデータを用いたストレス検出のための,新しい文脈認識型アクティブラーニング(RL)アルゴリズムを提案する。
提案手法では,EMAの展開に最適な時刻を動的に選択し,ユーザの即時コンテキストを利用してラベルの精度を最大化し,侵入性を最小化する。
この研究は、パーソナライズされたコンテキスト駆動のリアルタイムストレスモニタリング手法への大きな動きを示す。
論文 参考訳(メタデータ) (2024-07-11T06:33:11Z) - Center-Sensitive Kernel Optimization for Efficient On-Device Incremental Learning [88.78080749909665]
現在のオンデバイストレーニング手法は、破滅的な忘れを考慮せずに、効率的なトレーニングにのみ焦点をあてている。
本稿では,単純だが効果的なエッジフレンドリーなインクリメンタル学習フレームワークを提案する。
本手法は,メモリの削減と近似計算により,平均精度38.08%の高速化を実現する。
論文 参考訳(メタデータ) (2024-06-13T05:49:29Z) - A Novel Loss Function Utilizing Wasserstein Distance to Reduce
Subject-Dependent Noise for Generalizable Models in Affective Computing [0.4818210066519976]
感情は人間の行動の重要な部分であり、思考、意思決定、コミュニケーションスキルに影響を与える可能性がある。
感情を正確に監視し識別する能力は、行動訓練、感情的幸福の追跡、人間とコンピュータのインターフェイスの開発など、多くの人間中心のアプリケーションで有用である。
論文 参考訳(メタデータ) (2023-08-17T01:15:26Z) - Personalization of Stress Mobile Sensing using Self-Supervised Learning [1.7598252755538808]
ストレスは様々な健康問題への主要な貢献者として広く認められている。
リアルタイムのストレス予測は、デジタル介入がストレスの開始時に即座に反応し、心臓のリズム不規則性のような多くの心理的、生理的症状を避けるのに役立つ。
しかし、機械学習を用いたストレス予測の主な課題は、ラベルの主観性とスパース性、大きな特徴空間、比較的少ないラベル、特徴と結果の間の複雑な非線形および主観的関係である。
論文 参考訳(メタデータ) (2023-08-04T22:26:33Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
本稿では,人間の行動認識に最適なセンサ配置の課題を解決するための新しい手法を提案する。
得られた骨格データは、最適なセンサ位置を特定するためのユニークな戦略を提供する。
本研究は,センサ配置の視覚的手法が従来のディープラーニング手法と同等の結果をもたらすことを示唆している。
論文 参考訳(メタデータ) (2023-07-06T10:38:14Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - An Improved Subject-Independent Stress Detection Model Applied to
Consumer-grade Wearable Devices [7.714433991463217]
ストレス検出モデルを訓練する2つの一般的なアプローチは、主観的および主観的非依存的な訓練方法である。
本稿では,ニューラルネットワークアーキテクチャを用いたストレス関連バイオ信号処理パイプラインを導入し,対象非依存モデルの性能向上を図る。
提案モデルでは,従来の手法よりも1.63%高い平均精度のスコアが得られた。
論文 参考訳(メタデータ) (2022-03-18T00:19:42Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Sensitivity analysis in differentially private machine learning using
hybrid automatic differentiation [54.88777449903538]
感性分析のための新しいテクスチブリド自動識別システム(AD)を導入する。
これにより、ニューラルネットワークをプライベートデータ上でトレーニングするなど、任意の微分可能な関数合成の感度をモデル化できる。
当社のアプローチは,データ処理の設定において,プライバシ損失に関する原則的推論を可能にする。
論文 参考訳(メタデータ) (2021-07-09T07:19:23Z) - Physical Action Categorization using Signal Analysis and Machine
Learning [2.430361444826172]
本稿では,4つの物理行動の分類のための機械学習に基づくフレームワークを提案する。
表面筋電図 (SEMG) は, 物理的運動を信号に変換して分類し, 使用するための非侵襲的なメカニズムを示す。
論文 参考訳(メタデータ) (2020-08-16T18:43:00Z) - Towards Efficient Processing and Learning with Spikes: New Approaches
for Multi-Spike Learning [59.249322621035056]
各種タスクにおける他のベースラインよりも優れた性能を示すための2つの新しいマルチスパイク学習ルールを提案する。
特徴検出タスクでは、教師なしSTDPの能力と、その制限を提示する能力を再検討する。
提案した学習ルールは,特定の制約を適用せずに,幅広い条件で確実にタスクを解くことができる。
論文 参考訳(メタデータ) (2020-05-02T06:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。