論文の概要: Enhancing Performance and User Engagement in Everyday Stress Monitoring: A Context-Aware Active Reinforcement Learning Approach
- arxiv url: http://arxiv.org/abs/2407.08215v1
- Date: Thu, 11 Jul 2024 06:33:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 18:48:48.784861
- Title: Enhancing Performance and User Engagement in Everyday Stress Monitoring: A Context-Aware Active Reinforcement Learning Approach
- Title(参考訳): 日々のストレスモニタリングにおけるパフォーマンス向上とユーザエンゲージメント: 文脈認識型アクティブ強化学習アプローチ
- Authors: Seyed Amir Hossein Aqajari, Ziyu Wang, Ali Tazarv, Sina Labbaf, Salar Jafarlou, Brenda Nguyen, Nikil Dutt, Marco Levorato, Amir M. Rahmani,
- Abstract要約: 本稿では,スマートウォッチとスマートフォンのコンテキストデータを用いたストレス検出のための,新しい文脈認識型アクティブラーニング(RL)アルゴリズムを提案する。
提案手法では,EMAの展開に最適な時刻を動的に選択し,ユーザの即時コンテキストを利用してラベルの精度を最大化し,侵入性を最小化する。
この研究は、パーソナライズされたコンテキスト駆動のリアルタイムストレスモニタリング手法への大きな動きを示す。
- 参考スコア(独自算出の注目度): 4.132425356039815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's fast-paced world, accurately monitoring stress levels is crucial. Sensor-based stress monitoring systems often need large datasets for training effective models. However, individual-specific models are necessary for personalized and interactive scenarios. Traditional methods like Ecological Momentary Assessments (EMAs) assess stress but struggle with efficient data collection without burdening users. The challenge is to timely send EMAs, especially during stress, balancing monitoring efficiency and user convenience. This paper introduces a novel context-aware active reinforcement learning (RL) algorithm for enhanced stress detection using Photoplethysmography (PPG) data from smartwatches and contextual data from smartphones. Our approach dynamically selects optimal times for deploying EMAs, utilizing the user's immediate context to maximize label accuracy and minimize intrusiveness. Initially, the study was executed in an offline environment to refine the label collection process, aiming to increase accuracy while reducing user burden. Later, we integrated a real-time label collection mechanism, transitioning to an online methodology. This shift resulted in an 11% improvement in stress detection efficiency. Incorporating contextual data improved model accuracy by 4%. Personalization studies indicated a 10% enhancement in AUC-ROC scores, demonstrating better stress level differentiation. This research marks a significant move towards personalized, context-driven real-time stress monitoring methods.
- Abstract(参考訳): 今日のペースの速い世界では、ストレスレベルを正確に監視することが重要です。
センサベースのストレス監視システムは、効果的なモデルをトレーニングするために大きなデータセットを必要とすることが多い。
しかし、個人固有のモデルは、パーソナライズされた対話的なシナリオに必要である。
Ecological Momentary Assessments (EMA)のような従来の手法は、ストレスを評価するが、ユーザを負担することなく効率的なデータ収集に苦労する。
課題は、特にストレス時にEMAをタイムリーに送信し、モニタリング効率とユーザ利便性のバランスをとることだ。
本稿では,スマートウォッチのPPG(Photoplethysmography)データとスマートフォンのコンテキストデータを用いたストレス検出のための,文脈対応能動強化学習(RL)アルゴリズムを提案する。
提案手法では,EMAの展開に最適な時刻を動的に選択し,ユーザの即時コンテキストを利用してラベルの精度を最大化し,侵入性を最小化する。
当初、研究はオフライン環境で実施され、ラベル収集プロセスを洗練し、ユーザの負担を軽減しつつ精度を高めることを目的としていた。
その後、リアルタイムラベル収集機構を統合し、オンライン手法に移行した。
このシフトにより、応力検出効率は11%向上した。
コンテキストデータを組み込むことで、モデルの精度は4%向上した。
パーソナライゼーション研究では、AUC-ROCスコアが10%向上し、ストレスレベルの分化が向上した。
この研究は、パーソナライズされたコンテキスト駆動のリアルタイムストレスモニタリング手法への大きな動きを示す。
関連論文リスト
- Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - Context-Aware Stress Monitoring using Wearable and Mobile Technologies
in Everyday Settings [2.650926942973848]
本研究では,生理的データと文脈的データの両方を利用して,日常のストレスレベルを客観的に追跡するモニタリングシステムを提案する。
本稿では,その課題に対処する3階層のインターネット・オブ・シングス・システムアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-12-14T19:16:11Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
ノードレベルのグラフ異常検出(GAD)は、医学、ソーシャルネットワーク、eコマースなどの分野におけるグラフ構造化データから異常ノードを特定する上で重要な役割を果たす。
本稿では,GADの効率を向上させるために,PREM (preprocessing and Matching) という簡単な手法を提案する。
我々のアプローチは、強力な異常検出機能を維持しながら、GADを合理化し、時間とメモリ消費を削減します。
論文 参考訳(メタデータ) (2023-10-18T02:59:57Z) - Personalization of Stress Mobile Sensing using Self-Supervised Learning [1.7598252755538808]
ストレスは様々な健康問題への主要な貢献者として広く認められている。
リアルタイムのストレス予測は、デジタル介入がストレスの開始時に即座に反応し、心臓のリズム不規則性のような多くの心理的、生理的症状を避けるのに役立つ。
しかし、機械学習を用いたストレス予測の主な課題は、ラベルの主観性とスパース性、大きな特徴空間、比較的少ないラベル、特徴と結果の間の複雑な非線形および主観的関係である。
論文 参考訳(メタデータ) (2023-08-04T22:26:33Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Active Reinforcement Learning for Personalized Stress Monitoring in
Everyday Settings [4.4353357514621745]
本稿では,日常の環境をターゲットとしたウェアラブルセンサを用いた微粒な応力検出問題について考察する。
我々は,生理的信号を定期的に捉え,リアルタイムで処理する多層センサエッジクラウドプラットフォームを開発した。
提案手法は,ユーザからのクエリを88%,32%削減して,望ましい検出性能を実現する。
論文 参考訳(メタデータ) (2023-04-28T22:09:19Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Personalized Stress Monitoring using Wearable Sensors in Everyday
Settings [9.621481727547215]
心拍数(HR)と心拍変動率(HRV)に基づく日常生活ストレスレベルの客観的予測について検討する。
本稿では、ラベル付けのためのデータサンプルの調整可能なコレクションをサポートする、個人化されたストレス監視のための階層化システムアーキテクチャと、ラベル付けのためのリアルタイムデータのストリームから情報化サンプルを選択する方法を提案する。
論文 参考訳(メタデータ) (2021-07-31T04:15:15Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Bayesian Active Learning for Wearable Stress and Affect Detection [0.7106986689736827]
デバイス上での深層学習アルゴリズムによるストレス検出は、広汎なコンピューティングの進歩により増加傾向にある。
本稿では,ベイズニューラルネットワークの近似によるモデル不確実性を表現可能なフレームワークを提案する。
提案手法は, 提案手法により, 推定時の効率を著しく向上し, 獲得したプール点数がかなり少なくなる。
論文 参考訳(メタデータ) (2020-12-04T16:19:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。