Classical description of the parameter space geometry in the Dicke and
Lipkin-Meshkov-Glick models
- URL: http://arxiv.org/abs/2107.05758v1
- Date: Mon, 12 Jul 2021 22:11:45 GMT
- Title: Classical description of the parameter space geometry in the Dicke and
Lipkin-Meshkov-Glick models
- Authors: Diego Gonzalez, Daniel Guti\'errez-Ruiz, J. David Vergara
- Abstract summary: We study the classical analog of the quantum metric tensor and its scalar curvature for two well-known quantum physics models.
We find that, in the thermodynamic limit, they have the same divergent behavior near the quantum phase transition.
We also show that the scalar curvature is only defined on one of the system's phases and that it approaches a negative constant value.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study the classical analog of the quantum metric tensor and its scalar
curvature for two well-known quantum physics models. First, we analyze the
geometry of the parameter space for the Dicke model with the aid of the
classical and quantum metrics and find that, in the thermodynamic limit, they
have the same divergent behavior near the quantum phase transition, as opposed
to their corresponding scalar curvatures which are not divergent there. On the
contrary, under resonance conditions, both scalar curvatures exhibit a
divergence at the critical point. Second, we present the classical and quantum
metrics for the Lipkin-Meshkov-Glick model in the thermodynamic limit and find
a perfect agreement between them. We also show that the scalar curvature is
only defined on one of the system's phases and that it approaches a negative
constant value. Finally, we carry out a numerical analysis for the system's
finite sizes, which clearly shows the precursors of the quantum phase
transition in the metric and its scalar curvature and allows their
characterization as functions of the parameters and of the system's size.
Related papers
- Quantum Mechanics in Curved Space(time) with a Noncommutative Geometric Perspective [0.0]
We take seriously the noncommutative symplectic geometry corresponding to the quantum observable algebra.
The work points to a very different approach to quantum gravity.
arXiv Detail & Related papers (2024-06-20T10:44:06Z) - Emergent gravity from the correlation of spin-$\tfrac{1}{2}$ systems coupled with a scalar field [0.0]
This paper introduces several ideas of emergent gravity, which come from a system similar to an ensemble of quantum spin-$tfrac12$ particles.
To derive a physically relevant theory, the model is constructed by quantizing a scalar field in curved space-time.
arXiv Detail & Related papers (2024-05-03T14:34:48Z) - Identifying non-Hermitian critical points with quantum metric [2.465888830794301]
The geometric properties of quantum states are encoded by the quantum geometric tensor.
For conventional Hermitian quantum systems, the quantum metric corresponds to the fidelity susceptibility.
We extend this wisdom to the non-Hermitian systems for revealing non-Hermitian critical points.
arXiv Detail & Related papers (2024-04-24T03:36:10Z) - Quantum geometry of the parameter space: a proposal for curved systems [0.0]
We introduce an equivalent definition that generalizes the Zanardi, et al, formulation of the quantum geometric tensor.
The parameter-dependent metric modifies the behavior of both the quantum metric tensor and Berry curvature in a purely geometric way.
arXiv Detail & Related papers (2024-03-14T18:51:26Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Quantum geometric tensor and quantum phase transitions in the
Lipkin-Meshkov-Glick model [0.0]
We build the classical Hamiltonian using Bloch coherent states and find its stationary points.
They exhibit the presence of a ground state quantum phase transition, where a bifurcation occurs.
For a sign change in one Hamiltonian parameter, the same phenomenon is observed in the highest energy state.
arXiv Detail & Related papers (2021-05-24T21:48:34Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.