論文の概要: Identifying Influential Users in Unknown Social Networks for Adaptive
Incentive Allocation Under Budget Restriction
- arxiv url: http://arxiv.org/abs/2107.05992v2
- Date: Wed, 14 Jul 2021 13:16:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-15 11:22:57.769056
- Title: Identifying Influential Users in Unknown Social Networks for Adaptive
Incentive Allocation Under Budget Restriction
- Title(参考訳): 予算制限下での適応型インセンティブアロケーションのための未知のソーシャルネットワークにおけるインフルエンシアルユーザ同定
- Authors: Shiqing Wu, Weihua Li, Hao Shen, Quan Bai
- Abstract要約: インセンティブ化はユーザの行動に影響を与えるためのより積極的な方法であることが証明されている。
未知ネットワークにおける影響力のあるユーザを探索するための新しいアルゴリズムを提案する。
ユーザの好みと影響能力に基づいてインセンティブ値を決定する適応型インセンティブアロケーション・アプローチを設計する。
- 参考スコア(独自算出の注目度): 24.793013471521924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, recommendation systems have been widely applied in many
domains. These systems are impotent in affecting users to choose the behavior
that the system expects. Meanwhile, providing incentives has been proven to be
a more proactive way to affect users' behaviors. Due to the budget limitation,
the number of users who can be incentivized is restricted. In this light, we
intend to utilize social influence existing among users to enhance the effect
of incentivization. Through incentivizing influential users directly, their
followers in the social network are possibly incentivized indirectly. However,
in many real-world scenarios, the topological structure of the network is
usually unknown, which makes identifying influential users difficult. To tackle
the aforementioned challenges, in this paper, we propose a novel algorithm for
exploring influential users in unknown networks, which can estimate the
influential relationships among users based on their historical behaviors and
without knowing the topology of the network. Meanwhile, we design an adaptive
incentive allocation approach that determines incentive values based on users'
preferences and their influence ability. We evaluate the performance of the
proposed approaches by conducting experiments on both synthetic and real-world
datasets. The experimental results demonstrate the effectiveness of the
proposed approaches.
- Abstract(参考訳): 近年、多くの分野においてレコメンデーションシステムが広く採用されている。
これらのシステムは、ユーザがシステムが期待する振る舞いを選択することに影響を及ぼす。
一方、インセンティブの提供はユーザーの行動に影響を与えるためのより積極的な方法であることが証明されている。
予算の制限により、インセンティブを得られるユーザ数は制限される。
ここでは,ユーザ間で存在する社会的影響を活用し,インセンティブの効果を高めることを目的とする。
影響力のあるユーザーに直接インセンティブを与えることで、ソーシャルネットワークのフォロワーは間接的にインセンティブを受ける可能性がある。
しかし、多くの現実世界のシナリオでは、ネットワークのトポロジー構造は通常不明であり、影響力のあるユーザーを特定することは困難である。
上記の課題に取り組むため,本稿では,ネットワークのトポロジを知らずに,過去の行動に基づいてユーザ間の影響力関係を推定できる未知ネットワークにおける影響力のあるユーザを探索する新しいアルゴリズムを提案する。
一方,我々は,ユーザの嗜好と影響度に基づいてインセンティブ値を決定する適応的インセンティブ割当手法を考案する。
提案手法の有効性を,合成データセットと実世界のデータセットの両方で実験することで評価する。
実験の結果,提案手法の有効性が示された。
関連論文リスト
- Exploiting Preference Elicitation in Interactive and User-centered Algorithmic Recourse: An Initial Exploration [12.24579785420358]
Algorithmic Recourseは、自動化された機械学習モデルによって下される潜在的に望ましくない決定を覆すために、実行可能な説明、またはリコースプランを提供することを目的としている。
本稿では,ユーザの嗜好を抽出し,効果的なリコース介入に向かわせることを目的とした,ガイド付きインタラクションパターンに基づくインタラクションパラダイムを提案する。
論文 参考訳(メタデータ) (2024-04-08T08:00:05Z) - Effect of recommending users and opinions on the network connectivity and idea generation process [0.1843404256219181]
本研究では、リコメンデーションシステムが個人の行動特性がソーシャルネットワークのダイナミクスに与える影響について検討する。
ホモフィリーとユーザによる新しいアイデアへのオープンさ、新しい意見へのレコメンデーションによる露出の相互作用を探求する。
論文 参考訳(メタデータ) (2024-01-29T19:22:24Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Debiasing Recommendation by Learning Identifiable Latent Confounders [49.16119112336605]
コンバウンディングバイアスは、ユーザの露出とフィードバックの両方に影響を与える未測定変数の存在によって生じる。
既存の手法では,(1) 未測定変数について不確定な仮定を行うか,(2) 潜伏した共同創設者を直接ユーザの露出から推測する。
本稿では、上記の非識別問題の解決にプロキシ変数の集合を利用する新しい方法、すなわち、識別可能なデコノウ(iDCF)を提案する。
論文 参考訳(メタデータ) (2023-02-10T05:10:26Z) - Influential Recommender System [12.765277278599541]
Influential Recommender System (IRS) は,ユーザが対象アイテムを好むように積極的に導くことを目的とした,新しいレコメンデーションパラダイムである。
IRSは、ユーザに慎重に選択された項目(影響経路と呼ばれる)のシーケンスを徐々に推奨する。
IRNはベースラインレコメンデータよりも優れており,ユーザの興味に影響を及ぼす能力を示している。
論文 参考訳(メタデータ) (2022-11-18T03:04:45Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
タイルユーザーは、共同トレーニング後のヘッドユーザーよりも大幅に品質の低いレコメンデーションに悩まされる。
テールユーザーで個別に訓練されたモデルは、限られたデータのために依然として劣った結果が得られる。
本稿では,テールユーザの推薦性能を大幅に向上させる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T02:50:19Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - GAC: A Deep Reinforcement Learning Model Toward User Incentivization in
Unknown Social Networks [3.3946853660795884]
本稿では,GAC(Geometric Actor-Critic)と呼ばれるエンドツーエンドの強化学習に基づくフレームワークを提案する。
提案したGACの性能を評価するために,実世界の3つのソーシャルネットワークデータセットを用いた。
論文 参考訳(メタデータ) (2022-03-17T19:41:49Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - ABEM: An Adaptive Agent-based Evolutionary Approach for Mining
Influencers in Online Social Networks [1.6128569396451058]
オンラインソーシャルネットワークにおける進化的影響力の重要なステップは、インフルエンサーとして知られる少数のユーザーの識別です。
これらのネットワークの構造の進化する性質は、これらのインフルエンサーを見つけて識別することを困難にします。
静的ネットワークと動的ネットワークの両方の文脈でこの問題に対処するための適応型エージェントベースアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-14T00:31:08Z) - DiffNet++: A Neural Influence and Interest Diffusion Network for Social
Recommendation [50.08581302050378]
ソーシャルレコメンデーションは、ユーザの未知の嗜好を予測するために、ユーザ間のソーシャルコネクションを活用するために現れている。
ソーシャルレコメンデーションのための神経影響拡散ネットワーク(DiffNet)の予備研究を提案する(Diffnet)。
本稿では,Diffnetの改良アルゴリズムであるDiffNet++を提案する。
論文 参考訳(メタデータ) (2020-01-15T08:45:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。