論文の概要: HDMapNet: An Online HD Map Construction and Evaluation Framework
- arxiv url: http://arxiv.org/abs/2107.06307v2
- Date: Thu, 15 Jul 2021 01:54:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 11:15:20.573192
- Title: HDMapNet: An Online HD Map Construction and Evaluation Framework
- Title(参考訳): HDMapNet: オンラインHDマップの構築と評価フレームワーク
- Authors: Qi Li, Yue Wang, Yilun Wang, Hang Zhao
- Abstract要約: HDマップの構築は自動運転にとって重要な問題である。
従来のHDマップは、多くのシナリオでは信頼性の低いセンチメートルレベルの正確な位置決めと結合している。
オンライン地図学習は、自動運転車に先立って意味と幾何学を提供するための、よりスケーラブルな方法である。
- 参考スコア(独自算出の注目度): 23.19001503634617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-definition map (HD map) construction is a crucial problem for autonomous
driving. This problem typically involves collecting high-quality point clouds,
fusing multiple point clouds of the same scene, annotating map elements, and
updating maps constantly. This pipeline, however, requires a vast amount of
human efforts and resources which limits its scalability. Additionally,
traditional HD maps are coupled with centimeter-level accurate localization
which is unreliable in many scenarios. In this paper, we argue that online map
learning, which dynamically constructs the HD maps based on local sensor
observations, is a more scalable way to provide semantic and geometry priors to
self-driving vehicles than traditional pre-annotated HD maps. Meanwhile, we
introduce an online map learning method, titled HDMapNet. It encodes image
features from surrounding cameras and/or point clouds from LiDAR, and predicts
vectorized map elements in the bird's-eye view. We benchmark HDMapNet on the
nuScenes dataset and show that in all settings, it performs better than
baseline methods. Of note, our fusion-based HDMapNet outperforms existing
methods by more than 50% in all metrics. To accelerate future research, we
develop customized metrics to evaluate map learning performance, including both
semantic-level and instance-level ones. By introducing this method and metrics,
we invite the community to study this novel map learning problem. We will
release our code and evaluation kit to facilitate future development.
- Abstract(参考訳): 高精細地図(HDマップ)の構築は自動運転にとって重要な問題である。
この問題は通常、高品質の点雲を集め、同じシーンの複数の点雲を融合させ、地図要素を注釈付けし、常にマップを更新する。
しかしこのパイプラインは、スケーラビリティを制限する大量の人的努力とリソースを必要とします。
さらに、従来のhdマップは、多くのシナリオでは信頼できないセンチメートルレベルの正確なローカライズと結合されている。
本稿では,hdマップを動的に構築するオンラインマップ学習が,従来のhdマップよりも,自動運転車に先立って意味と幾何学を提供する上で,よりスケーラブルな方法であると主張する。
一方,我々はhdmapnetというオンライン地図学習手法を紹介する。
周囲のカメラやLiDARの点雲からの画像の特徴を符号化し、鳥の目視でベクトル化された地図要素を予測する。
nuScenesデータセット上でHDMapNetをベンチマークし、すべての設定において、ベースラインメソッドよりも優れたパフォーマンスを示す。
注目すべきは、私たちの融合ベースのHDMapNetは、すべてのメトリクスで既存のメソッドを50%以上上回っています。
今後の研究を加速するために,セマンティックレベルとインスタンスレベルの両方を含むマップ学習性能を評価するためのカスタムメトリクスを開発した。
この方法とメトリクスを導入することで,この新たなマップ学習問題の研究をコミュニティに依頼する。
今後の開発を促進するため、コードと評価キットをリリースします。
関連論文リスト
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
我々は、標準定義地図(SDMaps)を見るために知覚モデルを訓練することを提案する。
我々はSDMap要素をニューラル空間マップ表現やインスタンストークンにエンコードし、先行情報のような補完的な特徴を組み込む。
レーンセグメント表現フレームワークに基づいて、モデルはレーン、中心線、およびそれらのトポロジを同時に予測する。
論文 参考訳(メタデータ) (2024-11-22T06:13:42Z) - DeepAerialMapper: Deep Learning-based Semi-automatic HD Map Creation for Highly Automated Vehicles [0.0]
高解像度空中画像からHDマップを作成するための半自動手法を提案する。
提案手法では, ニューラルネットワークを訓練して, 空中画像をHDマップに関連するクラスに意味的に分割する。
マップをLanelet2フォーマットにエクスポートすることで、さまざまなユースケースを簡単に拡張できる。
論文 参考訳(メタデータ) (2024-10-01T15:05:05Z) - ExelMap: Explainable Element-based HD-Map Change Detection and Update [2.79552147676281]
本稿では,要素をベースとしたHDマップ変更検出と更新を行う新しいタスクを提案する。
ExelMapは、変更したマップ要素を具体的に識別する、説明可能な要素ベースのマップ更新戦略である。
これは、実世界のエンド・ツー・エンドの要素ベースのHDマップ変更の検出と更新に関する、初めての総合的な問題調査である。
論文 参考訳(メタデータ) (2024-09-16T11:17:33Z) - Enhancing Vectorized Map Perception with Historical Rasterized Maps [37.48510990922406]
我々は,オンラインベクトル化地図知覚を高めるために,低コストな履歴ラスタライズドマップを利用するHRMapNetを提案する。
履歴化された地図は、過去の予測されたベクトル化された結果から容易に構築でき、貴重な補完情報を提供する。
HRMapNetは、ほとんどのオンラインベクトル化マップ認識手法と統合することができる。
論文 参考訳(メタデータ) (2024-09-01T05:22:33Z) - Mind the map! Accounting for existing map information when estimating online HDMaps from sensor [15.275704436439012]
HDMapをセンサーから推定することで、コストを大幅に削減できる。
提案手法は,HDMapを推定する際の正確な状況の既存のマップを推定する。
我々は,新しいオンラインHDMap推定フレームワークであるMapEXを紹介する。
論文 参考訳(メタデータ) (2023-11-17T13:40:10Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) マップは、より安価で、世界中でカバーでき、スケーラブルな代替手段を提供する。
本稿では,オンライン地図予測にSDマップを統合する新しいフレームワークを提案し,Transformer を用いたエンコーダ SD Map Representations を提案する。
この拡張は、現在の最先端のオンラインマップ予測手法におけるレーン検出とトポロジー予測を一貫して(最大60%まで)大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-07T15:42:22Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
より優れた感度を有し,現実の自律運転シナリオに適した,新化に基づく評価指標を提案する。
また、精度の高い出力に微分可能化を適用し、HDマップの幾何学的監視を行う新しいフレームワークであるMapVR(Map Vectorization via Rasterization)を提案する。
論文 参考訳(メタデータ) (2023-06-18T08:51:14Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HDマップは道路路面の正確な定義と交通ルールの豊富な意味を持つ地図である。
実際の道路トポロジやジオメトリはごくわずかで、自動運転スタックをテストする能力は著しく制限されています。
高品質で多様なHDマップを生成可能な階層グラフ生成モデルであるHDMapGenを提案する。
論文 参考訳(メタデータ) (2021-06-28T17:59:30Z) - MP3: A Unified Model to Map, Perceive, Predict and Plan [84.07678019017644]
MP3は、入力が生のセンサーデータと高レベルのコマンドであるマップレス運転に対するエンドツーエンドのアプローチである。
提案手法は, より安全で, 快適であり, 長期クローズループシミュレーションにおいて, ベースラインよりもコマンドを追従できることを示す。
論文 参考訳(メタデータ) (2021-01-18T00:09:30Z) - HDNET: Exploiting HD Maps for 3D Object Detection [99.49035895393934]
高精細度(hd)マップは、現代の3dオブジェクト検出器の性能と頑健性を高める強力な事前情報を提供する。
我々はHDマップから幾何学的特徴と意味的特徴を抽出する単一ステージ検出器を設計する。
地図は至る所では利用できないため、生のLiDARデータからフライ時の地図を推定するマップ予測モジュールも提案する。
論文 参考訳(メタデータ) (2020-12-21T21:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。