論文の概要: HDNET: Exploiting HD Maps for 3D Object Detection
- arxiv url: http://arxiv.org/abs/2012.11704v1
- Date: Mon, 21 Dec 2020 21:59:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 06:29:00.771322
- Title: HDNET: Exploiting HD Maps for 3D Object Detection
- Title(参考訳): HDNET:3Dオブジェクト検出のためのHDマップのエクスプロイト
- Authors: Bin Yang, Ming Liang, Raquel Urtasun
- Abstract要約: 高精細度(hd)マップは、現代の3dオブジェクト検出器の性能と頑健性を高める強力な事前情報を提供する。
我々はHDマップから幾何学的特徴と意味的特徴を抽出する単一ステージ検出器を設計する。
地図は至る所では利用できないため、生のLiDARデータからフライ時の地図を推定するマップ予測モジュールも提案する。
- 参考スコア(独自算出の注目度): 99.49035895393934
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper we show that High-Definition (HD) maps provide strong priors
that can boost the performance and robustness of modern 3D object detectors.
Towards this goal, we design a single stage detector that extracts geometric
and semantic features from the HD maps. As maps might not be available
everywhere, we also propose a map prediction module that estimates the map on
the fly from raw LiDAR data. We conduct extensive experiments on KITTI as well
as a large-scale 3D detection benchmark containing 1 million frames, and show
that the proposed map-aware detector consistently outperforms the
state-of-the-art in both mapped and un-mapped scenarios. Importantly the whole
framework runs at 20 frames per second.
- Abstract(参考訳): 本稿では,高精細度(hd)マップが,現代の3次元物体検出器の性能と頑健性を高める強力な事前情報を提供することを示す。
この目的に向けて,HDマップから幾何学的特徴と意味的特徴を抽出する単一ステージ検出器を設計する。
地図は至る所では利用できないため、生のLiDARデータからフライ時の地図を推定するマップ予測モジュールも提案する。
我々は、KITTIと100万フレームを含む大規模3D検出ベンチマークの広範な実験を行い、提案したマップ認識検出器が、マップ化されたシナリオと未マップ化されたシナリオの両方において、常に最先端であることを示す。
重要なことに、フレームワーク全体が毎秒20フレームで動作します。
関連論文リスト
- ADMap: Anti-disturbance framework for reconstructing online vectorized
HD map [9.218463154577616]
本稿では, 反ゆらぎマップ再構築フレームワーク (ADMap) を提案する。
点次ジッタを緩和するため、このフレームワークは、マルチスケール知覚ネック、インスタンスインタラクティブアテンション(IIA)、ベクトル方向差損失(VDDL)の3つのモジュールで構成されている。
論文 参考訳(メタデータ) (2024-01-24T01:37:27Z) - ScalableMap: Scalable Map Learning for Online Long-Range Vectorized HD
Map Construction [42.874195888422584]
オンライン長範囲ベクトル化ハイデフィニション(HD)マップ構築のための,オンボードカメラセンサを用いた新しいエンドツーエンドパイプラインを提案する。
地図要素の特性を利用して地図構築の性能を向上させる。
論文 参考訳(メタデータ) (2023-10-20T09:46:24Z) - InsMapper: Exploring Inner-instance Information for Vectorized HD
Mapping [41.59891369655983]
InsMapperは、トランスフォーマーによるベクトル化された高精細マッピングのインナーインスタンス情報を利用する。
InsMapperは従来の最先端の手法を超越し、その有効性と汎用性を示している。
論文 参考訳(メタデータ) (2023-08-16T17:58:28Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
本稿では,3次元小物体検出のための効率的な特徴解析手法を提案する。
空間分解能の高いDSPDet3Dというマルチレベル3次元検出器を提案する。
ほぼ全ての物体を検知しながら、4500k以上のポイントからなる建物全体を直接処理するには2秒もかからない。
論文 参考訳(メタデータ) (2023-05-05T17:57:04Z) - Fully Sparse Fusion for 3D Object Detection [69.32694845027927]
現在広く使われているマルチモーダル3D検出法は、通常、密度の高いBird-Eye-View特徴マップを使用するLiDARベースの検出器上に構築されている。
完全にスパースなアーキテクチャは、長距離知覚において非常に効率的であるため、注目を集めている。
本稿では,新たに出現するフルスパースアーキテクチャにおいて,画像のモダリティを効果的に活用する方法を検討する。
論文 参考訳(メタデータ) (2023-04-24T17:57:43Z) - Fully Sparse 3D Object Detection [57.05834683261658]
長距離LiDARオブジェクト検出のためのフルスパース3Dオブジェクト検出器(FSD)を構築した。
FSDは一般的なスパース・ボクセル・エンコーダと新しいスパース・インスタンス認識(SIR)モジュール上に構築されている。
SIRは、ポイントをインスタンスにグループ化することで、以前のポイントベースのメソッドでの待ち行列クエリを避ける。
論文 参考訳(メタデータ) (2022-07-20T17:01:33Z) - HDMapNet: An Online HD Map Construction and Evaluation Framework [23.19001503634617]
HDマップの構築は自動運転にとって重要な問題である。
従来のHDマップは、多くのシナリオでは信頼性の低いセンチメートルレベルの正確な位置決めと結合している。
オンライン地図学習は、自動運転車に先立って意味と幾何学を提供するための、よりスケーラブルな方法である。
論文 参考訳(メタデータ) (2021-07-13T18:06:46Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HDマップは道路路面の正確な定義と交通ルールの豊富な意味を持つ地図である。
実際の道路トポロジやジオメトリはごくわずかで、自動運転スタックをテストする能力は著しく制限されています。
高品質で多様なHDマップを生成可能な階層グラフ生成モデルであるHDMapGenを提案する。
論文 参考訳(メタデータ) (2021-06-28T17:59:30Z) - MapFusion: A General Framework for 3D Object Detection with HDMaps [17.482961825285013]
現代の3Dオブジェクトディテクタパイプラインにマップ情報を統合するためのMapFusionを提案します。
マップ情報を融合することにより、3つの強力な3dオブジェクト検出ベースラインで平均精度(map)が1.27ポイントから2.79ポイント向上する。
論文 参考訳(メタデータ) (2021-03-10T08:36:59Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
本稿では,LIDARとカメラを併用して高精度な位置検出を実現する3Dオブジェクト検出器を提案する。
我々は,連続畳み込みを利用して画像とlidar特徴マップを異なるレベルの解像度で融合する,エンドツーエンド学習可能なアーキテクチャを設計した。
論文 参考訳(メタデータ) (2020-12-20T18:43:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。