論文の概要: Thinkback: Task-SpecificOut-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2107.06668v1
- Date: Tue, 13 Jul 2021 09:34:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-15 14:26:16.578897
- Title: Thinkback: Task-SpecificOut-of-Distribution Detection
- Title(参考訳): thinkback: タスク固有の分散検出
- Authors: Lixuan Yang and Dario Rossi
- Abstract要約: 本稿では,Deep Learningモデルに適した分布外検出問題を定式化する方法を提案する。
本手法では, トレーニングデータに対する微調整処理は必要としないが, アウト・オブ・ディストリビューション検出技術よりもはるかに精度が高い。
- 参考スコア(独自算出の注目度): 11.564082628014638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increased success of Deep Learning (DL) has recently sparked large-scale
deployment of DL models in many diverse industry segments. Yet, a crucial
weakness of supervised model is the inherent difficulty in handling
out-of-distribution samples, i.e., samples belonging to classes that were not
presented to the model at training time. We propose in this paper a novel way
to formulate the out-of-distribution detection problem, tailored for DL models.
Our method does not require fine tuning process on training data, yet is
significantly more accurate than the state of the art for out-of-distribution
detection.
- Abstract(参考訳): ディープラーニング(DL)の成功の増加は、最近、さまざまな業界セグメントにDLモデルを大規模に展開するきっかけとなった。
しかし、教師付きモデルの重大な弱点は、配布外サンプル、すなわち訓練時にモデルに提示されなかったクラスに属するサンプルを扱うのに固有の困難さである。
本稿では,DLモデルに適した分布外検出問題を定式化するための新しい手法を提案する。
本手法では,トレーニングデータに対する微調整処理は必要としないが,分散検出のための最先端技術よりも精度が高い。
関連論文リスト
- Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
業界関係者は、モデルが数億台のマシンにデプロイされているため、マルウェア検出精度の小さな改善に気を配っている。
学術研究はしばしば1万のサンプルの順序で公開データセットに制限される。
利用可能なサンプルのプールから難易度ベンチマークを生成するためのアプローチを考案する。
論文 参考訳(メタデータ) (2023-12-25T21:25:55Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
大規模で事前訓練されたモデルは、問題を解決するのに必要なタスク固有のデータの量を劇的に削減するが、多くの場合、ドメイン固有のニュアンスを箱から取り出すのに失敗する。
本稿では,NLPとマルチモーダル学習の最近の進歩を活用して,検索エンジン検索による事前学習モデルを強化する方法について述べる。
論文 参考訳(メタデータ) (2023-11-29T05:33:28Z) - Bridging the Gap: Addressing Discrepancies in Diffusion Model Training
for Classifier-Free Guidance [1.6804613362826175]
拡散モデルは、生成モデルにおいて重要な進歩として現れている。
本稿では,従来の訓練方法と所望の条件付きサンプリング行動との相違点を明らかにすることを目的とする。
トレーニング目標とサンプリング行動との整合性を向上する改良された損失関数を導入する。
論文 参考訳(メタデータ) (2023-11-02T02:03:12Z) - An Empirical Study of Deep Learning Models for Vulnerability Detection [4.243592852049963]
我々は、広く使われている2つの脆弱性検出データセット上で、最先端の9つのディープラーニングモデルを調査し、再現した。
モデル能力,トレーニングデータ,モデル解釈について検討した。
我々の研究結果は、モデル結果の理解を深め、トレーニングデータ作成のガイダンスを提供し、モデルの堅牢性を向上させるのに役立つ。
論文 参考訳(メタデータ) (2022-12-15T19:49:34Z) - Extremely Simple Activation Shaping for Out-of-Distribution Detection [10.539058676970267]
アウト・オブ・ディストリビューション(OOD)検出は、モデルが目に見えない状況に対処する能力をテストする重要な領域である。
既存のOOD検出方法は、追加のトレーニングステップ、追加データ、あるいはトレーニングされたネットワークに非自明な変更を加える。
本稿では, 試料の後期層での活性化の大部分を除去する, 極めて単純で, ホック後のオンザフライ活性化形成法であるASHを提案する。
実験により、このような単純な治療は、最先端のOODを可能にするために、分布内と分布外の違いを高めることが示されている。
論文 参考訳(メタデータ) (2022-09-20T17:09:49Z) - Self-Damaging Contrastive Learning [92.34124578823977]
ラベルのないデータは一般に不均衡であり、長い尾の分布を示す。
本稿では,クラスを知らずに表現学習を自動的にバランスをとるための,自己学習コントラスト学習という原則的枠組みを提案する。
実験の結果,SDCLRは全体としての精度だけでなく,バランス性も著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-06-06T00:04:49Z) - Measuring Discrimination to Boost Comparative Testing for Multiple Deep
Learning Models [13.048085195516935]
複数のDLモデルをランク付けするためのサンプル識別に基づく選択を提案する。
3つの画像データセットと80実世界のdlモデルを用いて実験研究を行った。
実験の結果,SDSは最先端のベースライン法と比較して,複数のDLモデルのランク付けに有効で効率的なサンプル選択法であることがわかった。
論文 参考訳(メタデータ) (2021-03-07T12:03:59Z) - Instance Selection for GANs [25.196177369030146]
GAN(Generative Adversarial Networks)は、高品質な合成画像を生成するために広く採用されている。
GANはしばしばデータ多様体の外にある非現実的なサンプルを生成する。
本稿では,サンプルの品質向上のための新しいアプローチを提案する。モデルトレーニングが行われる前に,インスタンス選択によるトレーニングデータセットの変更を行う。
論文 参考訳(メタデータ) (2020-07-30T06:33:51Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
信頼性正則化という新しいデバイアス化手法を導入する。
モデルがバイアスを悪用するのを防ぐと同時に、トレーニングのすべての例から学ぶのに十分なインセンティブを得られるようにします。
提案手法を3つのNLUタスクで評価し,前者とは対照的に,アウト・オブ・ディストリビューション・データセットの性能が向上することを示す。
論文 参考訳(メタデータ) (2020-05-01T11:22:55Z) - Deep k-NN for Noisy Labels [55.97221021252733]
予備モデルのロジット層上での単純な$k$-nearest近傍フィルタリング手法により、ラベルの誤りを除去し、最近提案された多くの手法よりも正確なモデルを生成することができることを示す。
論文 参考訳(メタデータ) (2020-04-26T05:15:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。