論文の概要: Do Humans Trust Advice More if it Comes from AI? An Analysis of Human-AI
Interactions
- arxiv url: http://arxiv.org/abs/2107.07015v1
- Date: Wed, 14 Jul 2021 21:33:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 13:56:45.361316
- Title: Do Humans Trust Advice More if it Comes from AI? An Analysis of Human-AI
Interactions
- Title(参考訳): 人間はAIから来るとより信頼されるか?
人間とAIの相互作用の解析
- Authors: Kailas Vodrahalli, Tobias Gerstenberg, James Zou
- Abstract要約: 人間は、仲間の人間のグループからの同等の提案に対して、AIの提案をどのように利用するかの特徴付けをする。
特定のタスクにおける人間対AIのパフォーマンスに対する参加者の信念が、アドバイスをハイドするかどうかに影響を及ぼすことがわかった。
- 参考スコア(独自算出の注目度): 8.785345834486057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many applications of AI, the algorithm's output is framed as a suggestion
to a human user. The user may ignore the advice or take it into consideration
to modify his/her decisions. With the increasing prevalence of such human-AI
interactions, it is important to understand how users act (or do not act) upon
AI advice, and how users regard advice differently if they believe the advice
come from an "AI" versus another human. In this paper, we characterize how
humans use AI suggestions relative to equivalent suggestions from a group of
peer humans across several experimental settings. We find that participants'
beliefs about the human versus AI performance on a given task affects whether
or not they heed the advice. When participants decide to use the advice, they
do so similarly for human and AI suggestions. These results provide insights
into factors that affect human-AI interactions.
- Abstract(参考訳): aiの多くの応用において、アルゴリズムの出力は人間のユーザへの提案としてフレーム化される。
ユーザーはアドバイスを無視したり、判断を変更するために考慮したりすることができる。
このような人間-aiインタラクションの普及に伴い、ユーザーがaiアドバイスに対してどのように行動するか(あるいは行動しないか)、また、アドバイスが"ai"と他の人間から来ると信じている場合、ユーザーがアドバイスをどう考えるかを理解することが重要である。
本稿では,複数の実験環境において,人間同士の対等な提案に対するAI提案の使い方を特徴付ける。
特定のタスクにおける人間対AIのパフォーマンスに対する参加者の信念が、アドバイスをハイドするかどうかに影響を及ぼすことがわかった。
参加者がアドバイスを使うことを決めると、人間やAIの提案も同じように行われる。
これらの結果は、人間とAIの相互作用に影響を与える要因に関する洞察を与える。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
AIによる意思決定において、人間はしばしばAIの提案を受動的にレビューし、それを受け入れるか拒否するかを決定する。
意思決定における人間-AIの意見の対立に関する議論と人間のリフレクションを促進する新しい枠組みであるHuman-AI Deliberationを提案する。
人間の熟考の理論に基づいて、この枠組みは人間とAIを次元レベルの意見の引用、熟考的議論、意思決定の更新に携わる。
論文 参考訳(メタデータ) (2024-03-25T14:34:06Z) - Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making [48.179458030691286]
Recommender、Analyzer、Devil's Advocateの3つのAIの役割について検討する。
以上の結果から,各役割のタスクパフォーマンス,信頼性の適切性,ユーザエクスペリエンスにおける長所と短所が明らかとなった。
これらの洞察は、異なる状況に応じて適応的な機能的役割を持つAIアシスタントを設計する上で、貴重な意味を提供する。
論文 参考訳(メタデータ) (2024-03-04T07:32:28Z) - Improving Human-AI Collaboration With Descriptions of AI Behavior [14.904401331154062]
人々はAIシステムを使って意思決定を改善するが、しばしばAIの予測を過度に、あるいは過度に予測し、手伝わなかったよりも悪いパフォーマンスをする。
人々がAIアシスタントを適切に頼りにするために、行動記述を示すことを提案する。
論文 参考訳(メタデータ) (2023-01-06T00:33:08Z) - Should I Follow AI-based Advice? Measuring Appropriate Reliance in
Human-AI Decision-Making [0.0]
私たちは、人間がAIアドバイスを盲目的に頼らず、その品質を区別し、より良い意思決定を行うために行動できるようにすることを目標としています。
現在の研究では、ケースバイケースベースでAIアドバイスに対する適切な信頼(AR)の基準が欠如している。
我々は、ARをアドバイス品質を識別し、それに応じて振る舞う能力を測定する2次元構成体として見ることを提案する。
論文 参考訳(メタデータ) (2022-04-14T12:18:51Z) - The Response Shift Paradigm to Quantify Human Trust in AI
Recommendations [6.652641137999891]
説明可能性、解釈可能性、そしてそれらがAIシステムに対する人間の信頼にどれほど影響するかは、究極的には機械学習と同じくらいの人間の認知の問題である。
我々は,AIレコメンデーションが人的決定に与える影響を定量化する汎用のヒューマン・AIインタラクション・パラダイムを開発し,検証した。
我々の実証・実証パラダイムは、急速に成長するXAI/IAIアプローチをエンドユーザーへの影響の観点から定量的に比較することができる。
論文 参考訳(メタデータ) (2022-02-16T22:02:09Z) - Uncalibrated Models Can Improve Human-AI Collaboration [10.106324182884068]
私たちは、AIモデルを実際によりも自信を持って提示することで、人間-AIのパフォーマンスが向上することを示した。
私たちはまず、何千もの人間のインタラクションのデータを使って、人間がAIアドバイスを組み込む方法のモデルを学びます。
論文 参考訳(メタデータ) (2022-02-12T04:51:00Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - The corruptive force of AI-generated advice [0.0]
AIによるアドバイスが人を傷つけるかどうかをテストします。
また、AIの存在に関する透明性が潜在的な害を軽減するかどうかをテストします。
結果、AIの腐敗力は人間と同じくらい強いことが判明」
論文 参考訳(メタデータ) (2021-02-15T13:15:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。