論文の概要: Cybertrust: From Explainable to Actionable and Interpretable AI (AI2)
- arxiv url: http://arxiv.org/abs/2201.11117v1
- Date: Wed, 26 Jan 2022 18:53:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-27 13:22:02.319932
- Title: Cybertrust: From Explainable to Actionable and Interpretable AI (AI2)
- Title(参考訳): サイバートラスト:説明可能なAI(AI2)
- Authors: Stephanie Galaitsi, Benjamin D. Trump, Jeffrey M. Keisler, Igor
Linkov, Alexander Kott
- Abstract要約: Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
- 参考スコア(独自算出の注目度): 58.981120701284816
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To benefit from AI advances, users and operators of AI systems must have
reason to trust it. Trust arises from multiple interactions, where predictable
and desirable behavior is reinforced over time. Providing the system's users
with some understanding of AI operations can support predictability, but
forcing AI to explain itself risks constraining AI capabilities to only those
reconcilable with human cognition. We argue that AI systems should be designed
with features that build trust by bringing decision-analytic perspectives and
formal tools into AI. Instead of trying to achieve explainable AI, we should
develop interpretable and actionable AI. Actionable and Interpretable AI (AI2)
will incorporate explicit quantifications and visualizations of user confidence
in AI recommendations. In doing so, it will allow examining and testing of AI
system predictions to establish a basis for trust in the systems' decision
making and ensure broad benefits from deploying and advancing its computational
capabilities.
- Abstract(参考訳): AIの進歩の恩恵を受けるためには、ユーザーとAIシステムのオペレーターがそれを信頼する必要がある。
信頼は複数の相互作用から生じ、予測可能で望ましい行動は時間とともに強化される。
AI操作をある程度理解したシステムのユーザを提供することは、予測可能性をサポートすることができるが、AIは、人間の認識と照合可能な人だけにAI能力を制約するリスクを自ら説明せざるを得ない。
AIシステムは、決定分析的な視点とフォーマルなツールをAIに持ち込むことによって信頼を構築する機能で設計されるべきである、と私たちは主張する。
説明可能なAIを達成する代わりに、解釈可能な行動可能なAIを開発するべきです。
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
そうすることで、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼基盤を確立し、その計算能力の展開と向上による幅広いメリットを確実にすることができる。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Never trust, always verify : a roadmap for Trustworthy AI? [12.031113181911627]
我々はAIベースのシステムのコンテキストにおける信頼を検証し、AIシステムが信頼に値するものとなることの意味を理解する。
我々は、AIに対する信頼(resp. zero-trust)モデルを提案し、AIシステムの信頼性を保証するために満足すべき特性のセットを提案する。
論文 参考訳(メタデータ) (2022-06-23T21:13:10Z) - Confident AI [0.0]
本稿では,人工知能(AI)と機械学習(ML)システムを,モデル予測と報告結果に対するアルゴリズムとユーザ信頼性の両方で設計する手段として,信頼AIを提案する。
Confident AIの4つの基本原則は、反復性、信頼性、十分性、適応性である。
論文 参考訳(メタデータ) (2022-02-12T02:26:46Z) - Structured access to AI capabilities: an emerging paradigm for safe AI
deployment [0.0]
AIシステムをオープンに普及させる代わりに、開発者はAIシステムとの制御された腕の長さのインタラクションを促進する。
Aimは、危険なAI能力が広くアクセスされることを防ぐと同時に、安全に使用できるAI機能へのアクセスを保護することを目的としている。
論文 参考訳(メタデータ) (2022-01-13T19:30:16Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Know Your Model (KYM): Increasing Trust in AI and Machine Learning [4.93786553432578]
信頼度の各要素を分析し、最適なAI機能を確保するために活用できる20のガイドラインのセットを提供します。
このガイドラインは、信頼性が証明可能で、実証可能であること、実装に依存しないこと、あらゆる分野のあらゆるAIシステムに適用可能であることを保証する。
論文 参考訳(メタデータ) (2021-05-31T14:08:22Z) - Does Explainable Artificial Intelligence Improve Human Decision-Making? [17.18994675838646]
我々は、AI(制御)を使わずに客観的な人間の意思決定精度を、AI予測(説明なし)とAI予測(説明なし)とを比較して評価する。
あらゆる種類のAI予測は、ユーザの判断精度を改善する傾向がありますが、説明可能なAIが有意義な影響を与えるという決定的な証拠はありません。
我々の結果は、少なくともいくつかの状況において、説明可能なAIが提供する「なぜ」情報は、ユーザの意思決定を促進することができないことを示唆している。
論文 参考訳(メタデータ) (2020-06-19T15:46:13Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。