論文の概要: Learning Sparse Interaction Graphs of Partially Observed Pedestrians for
Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2107.07056v1
- Date: Thu, 15 Jul 2021 00:45:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 13:52:36.256999
- Title: Learning Sparse Interaction Graphs of Partially Observed Pedestrians for
Trajectory Prediction
- Title(参考訳): 軌道予測のための部分観測歩行者のスパース相互作用グラフの学習
- Authors: Zhe Huang, Ruohua Li, Kazuki Shin, Katherine Driggs-Campbell
- Abstract要約: マルチペデストリアン軌道予測は、非構造環境における群衆と相互作用する自律システムの必然的な安全要素である。
Gumbel Social Transformerを提案し、Edge Gumbel Selectorは、各ステップで部分的に観察された歩行者のスパースグラフをサンプリングする。
提案手法は,仮定によって生じる潜在的な問題を克服し,ベンチマーク評価における関連研究よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.3025231207150811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-pedestrian trajectory prediction is an indispensable safety element of
autonomous systems that interact with crowds in unstructured environments. Many
recent efforts have developed trajectory prediction algorithms with focus on
understanding social norms behind pedestrian motions. Yet we observe these
works usually hold two assumptions that prevent them from being smoothly
applied to robot applications: positions of all pedestrians are consistently
tracked; the target agent pays attention to all pedestrians in the scene. The
first assumption leads to biased interaction modeling with incomplete
pedestrian data, and the second assumption introduces unnecessary disturbances
and leads to the freezing robot problem. Thus, we propose Gumbel Social
Transformer, in which an Edge Gumbel Selector samples a sparse interaction
graph of partially observed pedestrians at each time step. A Node Transformer
Encoder and a Masked LSTM encode the pedestrian features with the sampled
sparse graphs to predict trajectories. We demonstrate that our model overcomes
the potential problems caused by the assumptions, and our approach outperforms
the related works in benchmark evaluation.
- Abstract(参考訳): マルチペデストリアン軌道予測は、非構造環境における群衆と相互作用する自律システムの必然的な安全要素である。
近年,歩行者運動の背後にある社会的規範の理解に着目した軌道予測アルゴリズムが開発されている。
しかし、これらの研究は、通常2つの仮定を持ち、ロボットの応用にスムーズな適用を妨げている:全ての歩行者の位置は一貫して追跡されている;ターゲットエージェントは現場の歩行者全員に注意を払う。
第1の仮定は不完全な歩行者データとのバイアス付き相互作用モデリングにつながり,第2の仮定は不要な外乱を引き起こし,凍結ロボット問題を引き起こす。
そこで,Gumbel Social Transformerを提案する。Edge Gumbel Selectorは,時間ステップ毎に部分的に観察された歩行者のスパース相互作用グラフをサンプリングする。
Node Transformer EncoderとMasked LSTMは、歩行者の特徴をサンプルのスパースグラフでエンコードし、軌跡を予測する。
我々は,本モデルが仮定によって引き起こされる潜在的な問題を克服し,そのアプローチがベンチマーク評価で関連する作業を上回ることを実証する。
関連論文リスト
- Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotionは、多種多様な視覚的手がかりを利用して人間の行動を予測する、汎用トランスフォーマーベースのモデルである。
提案手法は,JTA,JRDB,歩行者,道路交通のサイクリスト,ETH-UCYなど,複数のデータセットで検証されている。
論文 参考訳(メタデータ) (2023-12-26T18:56:49Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - PedFormer: Pedestrian Behavior Prediction via Cross-Modal Attention
Modulation and Gated Multitask Learning [10.812772606528172]
本研究では,エゴ中心の視点から,歩行者の将来の軌跡や横断行動を予測するために,異なるデータモダリティに依存する新しい枠組みを提案する。
本モデルでは, トラジェクトリとアクション予測の精度を, それぞれ22%, 13%向上した。
論文 参考訳(メタデータ) (2022-10-14T15:12:00Z) - PreTR: Spatio-Temporal Non-Autoregressive Trajectory Prediction
Transformer [0.9786690381850356]
PRediction Transformer (PReTR) と呼ばれるモデルを導入し、時間分解型アテンションモジュールを用いてマルチエージェントシーンから特徴を抽出する。
これは、経験的により良い結果を持つ以前の研究されたモデルよりも計算上の必要性が低いことを示している。
我々は,学習対象クエリの集合を並列デコードするために,エンコーダ・デコーダ・トランスフォーマネットワークを利用する。
論文 参考訳(メタデータ) (2022-03-17T12:52:23Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
歩行者の立ち止まりと予測の新たな課題を紹介します。
都市交通における歩行者の立ち寄り行動を明示的に研究するためのベンチマークであるTransをリリースする。
歩行者の歩行動作に注釈を付けたいくつかの既存のデータセットから構築し、さまざまなシナリオや行動を実現する。
論文 参考訳(メタデータ) (2022-03-04T18:39:31Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
我々は、個々の動きとシーン占有マップの両方を予測することを提唱する。
歩行者の相対的な空間情報を保存するScene-Actor Graph Neural Network (SA-GNN)を提案する。
2つの大規模な実世界のデータセットで、我々のシーン占有率予測が最先端のモーション予測手法よりも正確でより校正されていることを示した。
論文 参考訳(メタデータ) (2021-01-07T06:08:21Z) - Spatial-Temporal Block and LSTM Network for Pedestrian Trajectories
Prediction [0.0]
本稿では,軌道予測のためのLSTMに基づく新しいアルゴリズムを提案する。
我々は静的なシーンと歩行者を考慮することでこの問題に対処する。
この関係を符号化したのはLSTMであり,我々のモデルは群集シナリオにおけるノードの軌跡を同時に予測する。
論文 参考訳(メタデータ) (2020-09-22T11:43:40Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。