Learning Sparse Interaction Graphs of Partially Observed Pedestrians for
Trajectory Prediction
- URL: http://arxiv.org/abs/2107.07056v2
- Date: Mon, 19 Jul 2021 02:32:28 GMT
- Title: Learning Sparse Interaction Graphs of Partially Observed Pedestrians for
Trajectory Prediction
- Authors: Zhe Huang, Ruohua Li, Kazuki Shin, Katherine Driggs-Campbell
- Abstract summary: Multi-pedestrian trajectory prediction is an indispensable safety element of autonomous systems that interact with crowds in unstructured environments.
We propose Gumbel Social Transformer, in which an Edge Gumbel Selector samples a sparse graph of partially observed pedestrians at each time step.
We demonstrate that our model overcomes the potential problems caused by the assumptions, and our approach outperforms the related works in benchmark evaluation.
- Score: 0.3025231207150811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-pedestrian trajectory prediction is an indispensable safety element of
autonomous systems that interact with crowds in unstructured environments. Many
recent efforts have developed trajectory prediction algorithms with focus on
understanding social norms behind pedestrian motions. Yet we observe these
works usually hold two assumptions that prevent them from being smoothly
applied to robot applications: positions of all pedestrians are consistently
tracked; the target agent pays attention to all pedestrians in the scene. The
first assumption leads to biased interaction modeling with incomplete
pedestrian data, and the second assumption introduces unnecessary disturbances
and leads to the freezing robot problem. Thus, we propose Gumbel Social
Transformer, in which an Edge Gumbel Selector samples a sparse interaction
graph of partially observed pedestrians at each time step. A Node Transformer
Encoder and a Masked LSTM encode the pedestrian features with the sampled
sparse graphs to predict trajectories. We demonstrate that our model overcomes
the potential problems caused by the assumptions, and our approach outperforms
the related works in benchmark evaluation.
Related papers
- Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotion is a generic Transformer-based model that exploits diverse and numerous visual cues to predict human behavior.
Our approach is validated on multiple datasets, including JTA, JRDB, Pedestrians and Cyclists in Road Traffic, and ETH-UCY.
arXiv Detail & Related papers (2023-12-26T18:56:49Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - PedFormer: Pedestrian Behavior Prediction via Cross-Modal Attention
Modulation and Gated Multitask Learning [10.812772606528172]
We propose a novel framework that relies on different data modalities to predict future trajectories and crossing actions of pedestrians from an ego-centric perspective.
We show that our model improves state-of-the-art in trajectory and action prediction by up to 22% and 13% respectively on various metrics.
arXiv Detail & Related papers (2022-10-14T15:12:00Z) - PreTR: Spatio-Temporal Non-Autoregressive Trajectory Prediction
Transformer [0.9786690381850356]
We introduce a model called PRediction Transformer (PReTR) that extracts features from the multi-agent scenes by employing a factorized-temporal attention module.
It shows less computational needs than previously studied models with empirically better results.
We leverage encoder-decoder Transformer networks for parallel decoding a set of learned object queries.
arXiv Detail & Related papers (2022-03-17T12:52:23Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
We advocate for predicting both the individual motions as well as the scene occupancy map.
We propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves the relative spatial information of pedestrians.
On two large-scale real-world datasets, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods.
arXiv Detail & Related papers (2021-01-07T06:08:21Z) - Spatial-Temporal Block and LSTM Network for Pedestrian Trajectories
Prediction [0.0]
In this paper, we propose a novel LSTM-based algorithm for trajectory prediction.
We tackle the problem by considering the static scene and pedestrian.
It is LSTM that encodes the relationship so that our model predicts nodes trajectories in crowd scenarios simultaneously.
arXiv Detail & Related papers (2020-09-22T11:43:40Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
Reasoning over visual data is a desirable capability for robotics and vision-based applications.
In this paper, we present a framework on graph to uncover relationships in different objects in the scene for reasoning about pedestrian intent.
Pedestrian intent, defined as the future action of crossing or not-crossing the street, is a very crucial piece of information for autonomous vehicles.
arXiv Detail & Related papers (2020-02-20T18:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.