MeNToS: Tracklets Association with a Space-Time Memory Network
- URL: http://arxiv.org/abs/2107.07067v1
- Date: Thu, 15 Jul 2021 01:33:21 GMT
- Title: MeNToS: Tracklets Association with a Space-Time Memory Network
- Authors: Mehdi Miah, Guillaume-Alexandre Bilodeau and Nicolas Saunier
- Abstract summary: The proposed method addresses particularly the data association problem.
MeNToS is the first to use the STM network to track object masks for MOTS.
We took the 4th place in the RobMOTS challenge.
- Score: 12.416351779111864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for multi-object tracking and segmentation (MOTS) that
does not require fine-tuning or per benchmark hyperparameter selection. The
proposed method addresses particularly the data association problem. Indeed,
the recently introduced HOTA metric, that has a better alignment with the human
visual assessment by evenly balancing detections and associations quality, has
shown that improvements are still needed for data association. After creating
tracklets using instance segmentation and optical flow, the proposed method
relies on a space-time memory network (STM) developed for one-shot video object
segmentation to improve the association of tracklets with temporal gaps. To the
best of our knowledge, our method, named MeNToS, is the first to use the STM
network to track object masks for MOTS. We took the 4th place in the RobMOTS
challenge. The project page is https://mehdimiah.com/mentos.html.
Related papers
- STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
Multiple object tracking (MOT) in Unmanned Aerial Vehicle (UAV) videos is important for diverse applications in computer vision.
We propose a novel Spatio-Temporal Cohesion Multiple Object Tracking framework (STCMOT)
We use historical embedding features to model the representation of ReID and detection features in a sequential order.
Our framework sets a new state-of-the-art performance in MOTA and IDF1 metrics.
arXiv Detail & Related papers (2024-09-17T14:34:18Z) - Autoregressive Queries for Adaptive Tracking with Spatio-TemporalTransformers [55.46413719810273]
rich-temporal information is crucial to the complicated target appearance in visual tracking.
Our method improves the tracker's performance on six popular tracking benchmarks.
arXiv Detail & Related papers (2024-03-15T02:39:26Z) - SMILEtrack: SiMIlarity LEarning for Occlusion-Aware Multiple Object
Tracking [20.286114226299237]
This paper introduces SMILEtrack, an innovative object tracker with a Siamese network-based Similarity Learning Module (SLM)
The SLM calculates the appearance similarity between two objects, overcoming the limitations of feature descriptors in Separate Detection and Embedding models.
Second, we develop a Similarity Matching Cascade (SMC) module with a novel GATE function for robust object matching across consecutive video frames.
arXiv Detail & Related papers (2022-11-16T10:49:48Z) - InterTrack: Interaction Transformer for 3D Multi-Object Tracking [9.283656931246645]
3D multi-object tracking (MOT) is a key problem for autonomous vehicles.
Our proposed solution, InterTrack, generates discriminative object representations for data association.
We validate our approach on the nuScenes 3D MOT benchmark, where we observe significant improvements.
arXiv Detail & Related papers (2022-08-17T03:24:36Z) - Learning Dynamic Compact Memory Embedding for Deformable Visual Object
Tracking [82.34356879078955]
We propose a compact memory embedding to enhance the discrimination of the segmentation-based deformable visual tracking method.
Our method outperforms the excellent segmentation-based trackers, i.e., D3S and SiamMask on DAVIS 2017 benchmark.
arXiv Detail & Related papers (2021-11-23T03:07:12Z) - Multi-Object Tracking and Segmentation with a Space-Time Memory Network [12.043574473965318]
We propose a method for multi-object tracking and segmentation based on a novel memory-based mechanism to associate tracklets.
The proposed tracker, MeNToS, addresses particularly the long-term data association problem.
arXiv Detail & Related papers (2021-10-21T17:13:17Z) - Learning Spatio-Appearance Memory Network for High-Performance Visual
Tracking [79.80401607146987]
Existing object tracking usually learns a bounding-box based template to match visual targets across frames, which cannot accurately learn a pixel-wise representation.
This paper presents a novel segmentation-based tracking architecture, which is equipped with a local-temporal memory network to learn accurate-temporal correspondence.
arXiv Detail & Related papers (2020-09-21T08:12:02Z) - Simultaneous Detection and Tracking with Motion Modelling for Multiple
Object Tracking [94.24393546459424]
We introduce Deep Motion Modeling Network (DMM-Net) that can estimate multiple objects' motion parameters to perform joint detection and association.
DMM-Net achieves PR-MOTA score of 12.80 @ 120+ fps for the popular UA-DETRAC challenge, which is better performance and orders of magnitude faster.
We also contribute a synthetic large-scale public dataset Omni-MOT for vehicle tracking that provides precise ground-truth annotations.
arXiv Detail & Related papers (2020-08-20T08:05:33Z) - Dense Scene Multiple Object Tracking with Box-Plane Matching [73.54369833671772]
Multiple Object Tracking (MOT) is an important task in computer vision.
We propose the Box-Plane Matching (BPM) method to improve the MOT performacne in dense scenes.
With the effectiveness of the three modules, our team achieves the 1st place on the Track-1 leaderboard in the ACM MM Grand Challenge HiEve 2020.
arXiv Detail & Related papers (2020-07-30T16:39:22Z) - Segment as Points for Efficient Online Multi-Object Tracking and
Segmentation [66.03023110058464]
We propose a highly effective method for learning instance embeddings based on segments by converting the compact image representation to un-ordered 2D point cloud representation.
Our method generates a new tracking-by-points paradigm where discriminative instance embeddings are learned from randomly selected points rather than images.
The resulting online MOTS framework, named PointTrack, surpasses all the state-of-the-art methods by large margins.
arXiv Detail & Related papers (2020-07-03T08:29:35Z) - Joint Object Detection and Multi-Object Tracking with Graph Neural
Networks [32.1359455541169]
We propose a new instance of joint MOT approach based on Graph Neural Networks (GNNs)
We show the effectiveness of our GNN-based joint MOT approach and show state-of-the-art performance for both detection and MOT tasks.
arXiv Detail & Related papers (2020-06-23T17:07:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.