論文の概要: High carbon stock mapping at large scale with optical satellite imagery
and spaceborne LIDAR
- arxiv url: http://arxiv.org/abs/2107.07431v1
- Date: Thu, 15 Jul 2021 16:21:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 14:07:50.461967
- Title: High carbon stock mapping at large scale with optical satellite imagery
and spaceborne LIDAR
- Title(参考訳): 光衛星画像と宇宙搭載LIDARによる大規模炭素ストックマッピング
- Authors: Nico Lang, Konrad Schindler, Jan Dirk Wegner
- Abstract要約: 森林破壊は高い炭素排出量を引き起こし、生物多様性を脅かすが、しばしば農業の拡大と結びついている。
本研究では,保全的かつ持続可能な土地利用計画決定を支援するための自動アプローチを提案する。
粗いGEDI LIDAR参照データから学習することにより,10mのSentinel-2ピクセルごとのキャノピー高さを推定する深層学習手法を開発した。
これらの壁面と壁面の上部の地図は,HCS林と荒廃した地域を86%の精度で分類し,インドネシア,マレーシア,フィリピンで最初の高炭素ストックマップを作成した。
- 参考スコア(独自算出の注目度): 27.25600860698314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing demand for commodities is leading to changes in land use
worldwide. In the tropics, deforestation, which causes high carbon emissions
and threatens biodiversity, is often linked to agricultural expansion. While
the need for deforestation-free global supply chains is widely recognized,
making progress in practice remains a challenge. Here, we propose an automated
approach that aims to support conservation and sustainable land use planning
decisions by mapping tropical landscapes at large scale and high spatial
resolution following the High Carbon Stock (HCS) approach. A deep learning
approach is developed that estimates canopy height for each 10 m Sentinel-2
pixel by learning from sparse GEDI LIDAR reference data, achieving an overall
RMSE of 6.3 m. We show that these wall-to-wall maps of canopy top height are
predictive for classifying HCS forests and degraded areas with an overall
accuracy of 86 % and produce a first high carbon stock map for Indonesia,
Malaysia, and the Philippines.
- Abstract(参考訳): 商品需要の増加は、世界中の土地利用の変化につながっている。
熱帯では、高い炭素排出量を引き起こし、生物多様性を脅かす森林伐採は、しばしば農業の拡大と結びついている。
森林破壊のないグローバルサプライチェーンの必要性は広く認識されているが、実際には進歩が課題である。
本研究では,hcs(high carbon stock)アプローチに従って,熱帯景観を大規模かつ高空間分解能にマッピングし,保全と持続可能な土地利用計画決定を支援するための自動的手法を提案する。
本研究では,10mのsentinel-2ピクセルに対して,sparse gedi lidar参照データからキャノピー高さを推定し,全体のrmseを6.3mとし,これらのキャノピー頂部の壁対壁図は,hcs林と劣化地域を86%の精度で分類し,インドネシア,マレーシア,フィリピンで最初の高炭素ストックマップを作成するための予測値であることを示す。
関連論文リスト
- The unrealized potential of agroforestry for an emissions-intensive agricultural commodity [48.652015514785546]
機械学習を用いて、西アフリカ地域全体での日陰木カバーと炭素ストックの見積もりを生成します。
既存の陰木カバーは低く、空間的に気候の脅威と一致していないことが判明した。
しかし、このセクターが毎年高い炭素フットプリントのかなりの割合とバランスをとるという、巨大な非現実的な可能性も見出されています。
論文 参考訳(メタデータ) (2024-10-28T10:02:32Z) - First Mapping the Canopy Height of Primeval Forests in the Tallest Tree Area of Asia [6.826460268652235]
我々は,世界規模の巨大木の分布領域を,世界初となる天蓋の高さマップを開発した。
このマッピングは、より個人的でコミュニティレベルの巨大な木を見つけるために不可欠です。
論文 参考訳(メタデータ) (2024-04-23T01:45:55Z) - Estimation of forest height and biomass from open-access multi-sensor
satellite imagery and GEDI Lidar data: high-resolution maps of metropolitan
France [0.0]
本研究は、森林パラメータの局所マップを作成するために以前開発された機械学習アプローチを用いている。
我々はGEDI Lidarミッションを基準高度データとして,Sentinel-1,Sentinel-2,ALOS-2 PALSA-2の衛星画像を用いて森林高度を推定した。
高さマップは、アロメトリック方程式を用いて体積と地上のバイオマス(AGB)に導かれる。
論文 参考訳(メタデータ) (2023-10-23T07:58:49Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
分類(離散化)と連続損失関数を最適化した新しい視覚変換器(ViT)モデルを提案する。
このモデルは、従来使用されていた畳み込みベースのアプローチ(ConvNet)よりも、連続損失関数のみで最適化された精度が向上する。
論文 参考訳(メタデータ) (2023-04-22T22:39:03Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
本稿では,複数の非国家の管轄区域で同時に作成される最初の高分解能天蓋の高さマップについて述べる。
地図は、2017年から2020年にかけて、マクサー画像に基づいて訓練された自己教師モデルから特徴を抽出することによって生成される。
また、GEDI観測に基づいて訓練された畳み込みネットワークを用いた後処理のステップも導入する。
論文 参考訳(メタデータ) (2023-04-14T15:52:57Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
森林破壊や荒廃により、毎年何百万ヘクタールもの熱帯林が失われる。
監視・森林破壊検知プログラムは、犯罪者の予防・処罰のための公共政策に加えて、使用されている。
本稿では,熱帯林の森林破壊検出作業におけるニューロ進化技術(NEAT)に基づくパターン分類器の利用を提案する。
論文 参考訳(メタデータ) (2022-08-23T16:04:12Z) - A high-resolution canopy height model of the Earth [22.603549892832753]
我々は,2020年に初めて,地上10mのキャノピー高さマップを提出した。
我々は,地球上の任意の場所でSentinel-2画像から天蓋の高さを推定する確率論的深層学習モデルを開発した。
我々のモデルは、一貫した不確実性のあるグローバルマッピングを可能にし、継続的なモニタリングをサポートし、変化を検出し、意思決定に通知する。
論文 参考訳(メタデータ) (2022-04-13T10:34:32Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Tackling the Overestimation of Forest Carbon with Deep Learning and
Aerial Imagery [13.97765383479824]
本論文は,航空画像,衛星画像,地中構造観測から森林炭素推定を初めて体系的に比較したものである。
航空画像の収集は著しく高価であり,高分解能が森林炭素推定をどの程度改善するかは定かでない。
以上の結果から,衛星画像による森林炭素推定は,熱帯再植林計画において10回以上も過大評価可能であることが示唆された。
論文 参考訳(メタデータ) (2021-07-23T15:59:52Z) - Counting Cows: Tracking Illegal Cattle Ranching From High-Resolution
Satellite Imagery [59.32805936205217]
牛の農業は世界の温室効果ガス排出量の8.8%を占めている。
40cmの解像度でアマゾンの衛星画像を取得し、合計28498頭の牛を含む903枚の画像のデータセットをまとめた。
本実験は,有望な結果を示し,これらの課題を解決するためのアルゴリズムとデータ収集プロセスのいずれにおいても,次のステップの重要方向を示すものである。
論文 参考訳(メタデータ) (2020-11-14T19:07:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。