論文の概要: Only Train Once: A One-Shot Neural Network Training And Pruning
Framework
- arxiv url: http://arxiv.org/abs/2107.07467v1
- Date: Thu, 15 Jul 2021 17:15:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 16:29:17.992325
- Title: Only Train Once: A One-Shot Neural Network Training And Pruning
Framework
- Title(参考訳): 一度だけトレーニングする: ワンショットニューラルネットワークのトレーニングとpruningフレームワーク
- Authors: Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu,
Luming Liang, Yixin Shi, Sheng Yi, Xiao Tu
- Abstract要約: 構造化プルーニング(Structured pruning)は、リソース制約のあるデバイスにディープニューラルネットワーク(DNN)をデプロイする際に一般的に使用されるテクニックである。
我々は,DNNが競争性能と,OTO(Not-Train-Once)によるFLOPの大幅な削減に敏感なフレームワークを提案する。
OTOには2つのキーが含まれている: (i) DNNのパラメータをゼロ不変群に分割し、出力に影響を与えることなくゼロ群をプルークすることができる; (ii)ゼロ群をプロモートするために、構造化画像最適化アルゴリズムであるHalf-Space Projected (HSPG)を定式化する。
OTOの有効性を示すために、私たちはトレーニングとトレーニングを行います。
- 参考スコア(独自算出の注目度): 31.959625731943675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Structured pruning is a commonly used technique in deploying deep neural
networks (DNNs) onto resource-constrained devices. However, the existing
pruning methods are usually heuristic, task-specified, and require an extra
fine-tuning procedure. To overcome these limitations, we propose a framework
that compresses DNNs into slimmer architectures with competitive performances
and significant FLOPs reductions by Only-Train-Once (OTO). OTO contains two
keys: (i) we partition the parameters of DNNs into zero-invariant groups,
enabling us to prune zero groups without affecting the output; and (ii) to
promote zero groups, we then formulate a structured-sparsity optimization
problem and propose a novel optimization algorithm, Half-Space Stochastic
Projected Gradient (HSPG), to solve it, which outperforms the standard proximal
methods on group sparsity exploration and maintains comparable convergence. To
demonstrate the effectiveness of OTO, we train and compress full models
simultaneously from scratch without fine-tuning for inference speedup and
parameter reduction, and achieve state-of-the-art results on VGG16 for CIFAR10,
ResNet50 for CIFAR10/ImageNet and Bert for SQuAD.
- Abstract(参考訳): 構造化プルーニングは、リソース制約のあるデバイスにディープニューラルネットワーク(DNN)をデプロイする際に一般的に使用されるテクニックである。
しかし、既存のプルーニングメソッドは通常ヒューリスティックでタスク指定され、追加の微調整手順を必要とする。
これらの制限を克服するため、DNNを競合性能を持つスリムなアーキテクチャに圧縮し、OTO (On only-Train-Once) によるFLOPを大幅に削減するフレームワークを提案する。
OTOには2つのキーが含まれている: (i) DNNのパラメータをゼロ不変群に分割し、出力に影響を与えることなくゼロ群をプルークすることができる; (ii) ゼロ群をプロモートするために、構造化されたスパーシティ最適化問題を定式化し、それを解決するために新しい最適化アルゴリズムである半空間確率射影勾配(HSPG)を提案する。
OTOの有効性を実証するために,推測高速化とパラメータ削減の微調整を行なわずに,フルモデルをスクラッチから同時に訓練・圧縮し,CIFAR10用VGG16,CIFAR10/ImageNet用ResNet50,SQuAD用Bertの最先端結果を得る。
関連論文リスト
- HESSO: Towards Automatic Efficient and User Friendly Any Neural Network Training and Pruning [38.01465387364115]
Only-Train-Once (OTO)シリーズはワークフローの合理化によって多くの問題点を解決するために最近提案されている。
各種アプリケーションにおけるHESSOとHESSO-CRICの改良版の有効性を数値的に示す。
論文 参考訳(メタデータ) (2024-09-11T05:28:52Z) - Structure-Preserving Network Compression Via Low-Rank Induced Training Through Linear Layers Composition [11.399520888150468]
ローランド誘導訓練(LoRITa)と呼ばれる理論的修正手法を提案する。
LoRITaは線形層を構成することで低ランク化を促進し、特異値切り込みを用いて圧縮する。
我々は,完全連結ネットワーク上でのMNIST,視覚変換器上でのCIFAR10,畳み込みニューラルネットワーク上でのCIFAR10/100と画像ネットを用いたアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-05-06T00:58:23Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - FALCON: FLOP-Aware Combinatorial Optimization for Neural Network Pruning [17.60353530072587]
ネットワークプルーニングは、性能を維持しながら、モデルサイズと計算コストを削減するソリューションを提供する。
現在のプルーニング法のほとんどは、非ゼロパラメータの数を減らし、空間性を改善することに重点を置いている。
本稿では,FALCONを提案する。FALCONは,モデル精度(忠実度),FLOP,スペーサ性制約を考慮に入れた,ネットワークプルーニングを最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-03-11T18:40:47Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - On Model Compression for Neural Networks: Framework, Algorithm, and Convergence Guarantee [21.818773423324235]
本稿では,低ランク近似と重み近似の2つのモデル圧縮手法に焦点を当てた。
本稿では,非最適化の新たな視点から,モデル圧縮のための全体論的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-13T02:14:42Z) - Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time
Mobile Acceleration [71.80326738527734]
本稿では,汎用的,きめ細かな構造化プルーニング手法とコンパイラの最適化を提案する。
提案手法は,より微細な構造化プルーニング手法とともに,最先端のDNN最適化フレームワークよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-22T23:53:14Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch [75.69506249886622]
ディープニューラルネットワーク(DNN)におけるスパーシティは、資源制約された環境でモデルを圧縮し、加速するために広く研究されている。
本稿では,N:M細粒構造スパースネットワークのスクラッチからトレーニングを初めて行う。
論文 参考訳(メタデータ) (2021-02-08T05:55:47Z) - A Unified DNN Weight Compression Framework Using Reweighted Optimization
Methods [31.869228048294445]
指定された制約に縛られた動的に更新された正規化項を持つ統合DNN重み決定フレームワークを提案する。
また、異なるDNN圧縮タスクを組み合わせるための統合フレームワークにもメソッドを拡張します。
論文 参考訳(メタデータ) (2020-04-12T02:59:06Z) - BLK-REW: A Unified Block-based DNN Pruning Framework using Reweighted
Regularization Method [69.49386965992464]
本稿では, 汎用的かつ柔軟な構造化プルーニング次元と, 強力かつ効率的な再加重正規化手法を組み合わせたブロック型プルーニングフレームワークを提案する。
我々のフレームワークは普遍的であり、CNNとRNNの両方に適用できる。
リアルタイムモバイルアクセラレーションと精度の妥協のないCNNとRNNの共通カバレッジを実現するのはこれが初めてである。
論文 参考訳(メタデータ) (2020-01-23T03:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。