A modular U-Net for automated segmentation of X-ray tomography images in
composite materials
- URL: http://arxiv.org/abs/2107.07468v2
- Date: Sat, 2 Dec 2023 13:14:04 GMT
- Title: A modular U-Net for automated segmentation of X-ray tomography images in
composite materials
- Authors: Jo\~ao P C Bertoldo, Etienne Decenci\`ere, David Ryckelynck, Henry
Proudhon
- Abstract summary: Deep learning has demonstrated success in many image processing tasks, including material science applications.
In this paper a modular interpretation of UNet is proposed and trained to segment 3D tomography images of a three-phased glass fiber-reinforced Polyamide 66.
We observe that human-comparable results can be achievied even with only 10 annotated layers and using a shallow U-Net yields better results than a deeper one.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: X-ray Computed Tomography (XCT) techniques have evolved to a point that
high-resolution data can be acquired so fast that classic segmentation methods
are prohibitively cumbersome, demanding automated data pipelines capable of
dealing with non-trivial 3D images. Deep learning has demonstrated success in
many image processing tasks, including material science applications, showing a
promising alternative for a humanfree segmentation pipeline. In this paper a
modular interpretation of UNet (Modular U-Net) is proposed and trained to
segment 3D tomography images of a three-phased glass fiber-reinforced Polyamide
66. We compare 2D and 3D versions of our model, finding that the former is
slightly better than the latter. We observe that human-comparable results can
be achievied even with only 10 annotated layers and using a shallow U-Net
yields better results than a deeper one. As a consequence, Neural Network (NN)
show indeed a promising venue to automate XCT data processing pipelines needing
no human, adhoc intervention.
Related papers
- μ-Net: A Deep Learning-Based Architecture for μ-CT Segmentation [2.012378666405002]
X-ray computed microtomography (mu-CT) is a non-destructive technique that can generate high-resolution 3D images of the internal anatomy of medical and biological samples.
extracting relevant information from 3D images requires semantic segmentation of the regions of interest.
We propose a novel framework that uses a convolutional neural network (CNN) to automatically segment the full morphology of the heart of Carassius auratus.
arXiv Detail & Related papers (2024-06-24T15:29:08Z) - N-BVH: Neural ray queries with bounding volume hierarchies [51.430495562430565]
In 3D computer graphics, the bulk of a scene's memory usage is due to polygons and textures.
We devise N-BVH, a neural compression architecture designed to answer arbitrary ray queries in 3D.
Our method provides faithful approximations of visibility, depth, and appearance attributes.
arXiv Detail & Related papers (2024-05-25T13:54:34Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - QU-net++: Image Quality Detection Framework for Segmentation of 3D
Medical Image Stacks [0.9594432031144714]
We propose an automated two-step method that evaluates the quality of medical images from 3D image stacks using a U-net++ model.
Images detected can then be used to further fine tune the U-net++ model for semantic segmentation.
arXiv Detail & Related papers (2021-10-27T05:28:02Z) - R2U3D: Recurrent Residual 3D U-Net for Lung Segmentation [17.343802171952195]
We propose a novel model, namely, Recurrent Residual 3D U-Net (R2U3D), for the 3D lung segmentation task.
In particular, the proposed model integrates 3D convolution into the Recurrent Residual Neural Network based on U-Net.
The proposed R2U3D network is trained on the publicly available dataset LUNA16 and it achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-05T19:17:14Z) - Atrous Residual Interconnected Encoder to Attention Decoder Framework
for Vertebrae Segmentation via 3D Volumetric CT Images [1.8146155083014204]
This paper proposes a novel algorithm for automated vertebrae segmentation via 3D volumetric spine CT images.
The proposed model is based on the structure of encoder to decoder, using layer normalization to optimize mini-batch training performance.
The experimental results show that our model achieves competitive performance compared with other state-of-the-art medical semantic segmentation methods.
arXiv Detail & Related papers (2021-04-08T12:09:16Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses.
Existing methods may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images.
We argue that preserving the continuity of extracted vessels requires to take into account the global geometry.
We propose a hybrid representation learning approach to address this challenge.
arXiv Detail & Related papers (2020-12-14T05:22:49Z) - Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data
Segmentation [0.0]
We present a novel approach of 2D to 3D transfer learning based on mapping pre-trained 2D convolutional neural network weights into planar 3D kernels.
The method is validated by the proposed planar 3D res-u-net network with encoder transferred from the 2D VGG-16.
arXiv Detail & Related papers (2020-11-23T17:11:50Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
We introduce a physics-driven generative approach that consists of two learnable neural modules.
We show that our data synthesis framework improves the downstream segmentation performance on several datasets.
arXiv Detail & Related papers (2020-09-01T19:17:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.