論文の概要: Depth Estimation from Monocular Images and Sparse radar using Deep
Ordinal Regression Network
- arxiv url: http://arxiv.org/abs/2107.07596v1
- Date: Thu, 15 Jul 2021 20:17:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-19 14:45:55.802349
- Title: Depth Estimation from Monocular Images and Sparse radar using Deep
Ordinal Regression Network
- Title(参考訳): 直交回帰ネットワークを用いた単眼画像とスパースレーダからの深さ推定
- Authors: Chen-Chou Lo and Patrick Vandewalle
- Abstract要約: 我々は, スパースレーダデータを単眼深度推定モデルに統合し, レーダによって提供されるスパースネスと限られた視野を減らすための新しい前処理手法を提案する。
本稿では,Fuらによる深度回帰ネットワークに基づく深度学習を用いて,単眼2次元画像から高密度深度マップを推定する手法を提案する。
- 参考スコア(独自算出の注目度): 2.0446891814677692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We integrate sparse radar data into a monocular depth estimation model and
introduce a novel preprocessing method for reducing the sparseness and limited
field of view provided by radar. We explore the intrinsic error of different
radar modalities and show our proposed method results in more data points with
reduced error. We further propose a novel method for estimating dense depth
maps from monocular 2D images and sparse radar measurements using deep learning
based on the deep ordinal regression network by Fu et al. Radar data are
integrated by first converting the sparse 2D points to a height-extended 3D
measurement and then including it into the network using a late fusion
approach. Experiments are conducted on the nuScenes dataset. Our experiments
demonstrate state-of-the-art performance in both day and night scenes.
- Abstract(参考訳): 我々は, スパースレーダデータを単眼深度推定モデルに統合し, レーダによって提供されるスパースネスと限られた視野を減らすための新しい前処理手法を提案する。
本稿では,異なるレーダモードの固有誤差を探索し,提案手法の誤差を低減したより多くのデータポイントに提案する。
さらに,fuらによる深層順序回帰ネットワークに基づく深層学習を用いて,単眼2次元画像とスパースレーダ計測から高密度深層マップを推定する新しい手法を提案する。
レーダデータは、まずスパース2D点を高度拡張された3D計測に変換し、後続の融合アプローチを用いてネットワークに組み込む。
nuScenesデータセットで実験が行われる。
実験では,昼夜ともに最先端のパフォーマンスを示す。
関連論文リスト
- Binocular-Guided 3D Gaussian Splatting with View Consistency for Sparse View Synthesis [53.702118455883095]
本稿では,ガウススプラッティングを用いたスパースビューから新しいビューを合成する新しい手法を提案する。
私たちのキーとなるアイデアは、両眼画像間の両眼立体的一貫性に固有の自己超越を探索することにあります。
我々の手法は最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-10-24T15:10:27Z) - GET-UP: GEomeTric-aware Depth Estimation with Radar Points UPsampling [7.90238039959534]
既存のアルゴリズムは3Dポイントを画像面に投影してレーダデータを処理し、画素レベルの特徴抽出を行う。
レーダデータから2次元情報と3次元情報を交換・集約するために,注目度の高いグラフニューラルネットワーク(GNN)を利用するGET-UPを提案する。
提案したGET-UPをnuScenesデータセット上でベンチマークし,従来最高のパフォーマンスモデルよりも15.3%,14.7%改善した。
論文 参考訳(メタデータ) (2024-09-02T14:15:09Z) - CaFNet: A Confidence-Driven Framework for Radar Camera Depth Estimation [6.9404362058736995]
本稿では,深度推定のための2段階・エンドツーエンドの信頼度対応フュージョンネット(CaFNet)を提案する。
第1段階は、あいまいな標高やノイズ測定など、レーダー固有の課題に対処する。
最終深度推定のために、レーダと画像の特徴を効果的に統合するための信頼性を考慮したゲート融合機構を革新する。
論文 参考訳(メタデータ) (2024-06-30T13:39:29Z) - Uncertainty-guided Optimal Transport in Depth Supervised Sparse-View 3D Gaussian [49.21866794516328]
3次元ガウシアンスプラッティングは、リアルタイムな新規ビュー合成において顕著な性能を示した。
これまでのアプローチでは、3Dガウスの訓練に奥行き監視を取り入れ、オーバーフィッティングを軽減してきた。
本研究では,3次元ガウスの深度分布を可視化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:18:30Z) - RadarCam-Depth: Radar-Camera Fusion for Depth Estimation with Learned Metric Scale [21.09258172290667]
本稿では, 単視点画像とスパース, ノイズの多いレーダー点雲の融合に基づく, 距離密度推定のための新しい手法を提案する。
提案手法は,難解なnuScenesデータセットと自己コンパイルしたZJU-4DRadarCamデータセットにおいて,平均絶対誤差(MAE)を25.6%,40.2%削減することにより,最先端のRadar-Camera深度推定法を著しく上回っている。
論文 参考訳(メタデータ) (2024-01-09T02:40:03Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
本稿では,OccNeRF法を用いて,3次元監視なしで占有ネットワークを訓練する手法を提案する。
我々は、再構成された占有領域をパラメータ化し、サンプリング戦略を再編成し、カメラの無限知覚範囲に合わせる。
意味的占有予測のために,事前学習した開語彙2Dセグメンテーションモデルの出力をフィルタリングし,プロンプトを洗練するためのいくつかの戦略を設計する。
論文 参考訳(メタデータ) (2023-12-14T18:58:52Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - How much depth information can radar infer and contribute [1.5899159309486681]
最新技術深度推定モデルを用いて,レーダデータの固有深度推定能力について検討する。
実験により, スパースレーダ入力のみによる推定深度は, 周囲の形状をある程度検出できることがわかった。
論文 参考訳(メタデータ) (2022-02-26T20:02:47Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
コスト効率のよいセンサで得られたデータからシーン形状を推定することは、ロボットや自動運転車にとって鍵となる。
本稿では,1枚のRGB画像から,低コストな能動深度センサによるスパース計測により,深度を推定する問題について検討する。
sparse networks (sans) は,深さ予測と完了という2つのタスクをmonodepthネットワークで実行可能にする,新しいモジュールである。
論文 参考訳(メタデータ) (2021-03-30T21:22:26Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。