論文の概要: Binocular-Guided 3D Gaussian Splatting with View Consistency for Sparse View Synthesis
- arxiv url: http://arxiv.org/abs/2410.18822v2
- Date: Sun, 27 Oct 2024 02:22:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:23:08.177709
- Title: Binocular-Guided 3D Gaussian Splatting with View Consistency for Sparse View Synthesis
- Title(参考訳): スパースビュー合成のための視点整合性を有する両眼誘導型3次元ガウススプラッティング
- Authors: Liang Han, Junsheng Zhou, Yu-Shen Liu, Zhizhong Han,
- Abstract要約: 本稿では,ガウススプラッティングを用いたスパースビューから新しいビューを合成する新しい手法を提案する。
私たちのキーとなるアイデアは、両眼画像間の両眼立体的一貫性に固有の自己超越を探索することにあります。
我々の手法は最先端の手法よりも優れています。
- 参考スコア(独自算出の注目度): 53.702118455883095
- License:
- Abstract: Novel view synthesis from sparse inputs is a vital yet challenging task in 3D computer vision. Previous methods explore 3D Gaussian Splatting with neural priors (e.g. depth priors) as an additional supervision, demonstrating promising quality and efficiency compared to the NeRF based methods. However, the neural priors from 2D pretrained models are often noisy and blurry, which struggle to precisely guide the learning of radiance fields. In this paper, We propose a novel method for synthesizing novel views from sparse views with Gaussian Splatting that does not require external prior as supervision. Our key idea lies in exploring the self-supervisions inherent in the binocular stereo consistency between each pair of binocular images constructed with disparity-guided image warping. To this end, we additionally introduce a Gaussian opacity constraint which regularizes the Gaussian locations and avoids Gaussian redundancy for improving the robustness and efficiency of inferring 3D Gaussians from sparse views. Extensive experiments on the LLFF, DTU, and Blender datasets demonstrate that our method significantly outperforms the state-of-the-art methods.
- Abstract(参考訳): スパース入力からの新たなビュー合成は、3Dコンピュータビジョンにおいて不可欠だが難しい課題である。
従来の手法では、神経前駆体(例えば深度前駆体)による3Dガウススティングを追加の監督として探索し、NeRFベースの手法と比較して有望な品質と効率を示す。
しかし、2D事前訓練されたモデルの神経前駆体は、しばしばうるさくてぼやけており、放射場の学習を正確に導くのに苦労している。
本稿では,外見を監督として必要としないガウススプラッティングを用いたスパークビューから新しいビューを合成する手法を提案する。
私たちのキーとなるアイデアは、両眼の立体的整合性に固有の自己超越性を探ることです。
この目的のために,ガウス的位置を正規化してガウス的冗長性を回避するガウス的不透明性制約を導入し,スパースビューから3次元ガウス的視点を推定する堅牢性と効率性を改善する。
LLFF,DTU,Blenderのデータセットに対する大規模な実験により,本手法が最先端の手法よりも優れていることが示された。
関連論文リスト
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Uncertainty-guided Optimal Transport in Depth Supervised Sparse-View 3D Gaussian [49.21866794516328]
3次元ガウシアンスプラッティングは、リアルタイムな新規ビュー合成において顕著な性能を示した。
これまでのアプローチでは、3Dガウスの訓練に奥行き監視を取り入れ、オーバーフィッティングを軽減してきた。
本研究では,3次元ガウスの深度分布を可視化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:18:30Z) - SGD: Street View Synthesis with Gaussian Splatting and Diffusion Prior [53.52396082006044]
現在の手法では、トレーニングの観点から大きく逸脱する観点で、レンダリングの品質を維持するのに苦労しています。
この問題は、移動中の車両の固定カメラが捉えた、まばらなトレーニングビューに起因している。
そこで本研究では,拡散モデルを用いて3DGSのキャパシティを向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T09:20:29Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
2次元画像空間で制御できる構造付きガウス表現を導入する。
次に、ガウス群、特にその位置を制約し、最適化中に独立に動くのを防ぐ。
我々は,様々な場面における最先端のスパースビュー NeRF ベースのアプローチと比較して,顕著な改善を示した。
論文 参考訳(メタデータ) (2024-03-28T15:27:13Z) - Sparse-view CT Reconstruction with 3D Gaussian Volumetric Representation [13.667470059238607]
Sparse-view CTは従来のCTスキャンの放射線線量を減らすための有望な戦略である。
近年、3Dガウスアンは複雑な自然シーンのモデル化に応用されている。
スパース・ビューCT再建の可能性について検討した。
論文 参考訳(メタデータ) (2023-12-25T09:47:33Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
我々は、文字の新たなビューをリアルタイムに合成するための新しいアプローチ、GPS-Gaussianを提案する。
提案手法は,スパースビューカメラ設定下での2K解像度のレンダリングを可能にする。
論文 参考訳(メタデータ) (2023-12-04T18:59:55Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。