論文の概要: Multi-Level Contrastive Learning for Few-Shot Problems
- arxiv url: http://arxiv.org/abs/2107.07608v1
- Date: Thu, 15 Jul 2021 21:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-19 14:40:57.450404
- Title: Multi-Level Contrastive Learning for Few-Shot Problems
- Title(参考訳): ファウショット問題に対するマルチレベルコントラスト学習
- Authors: Qing Chen, Jian Zhang
- Abstract要約: コントラスト学習(Contrastive Learning)は、類似したサンプルを互いに近づき、多様なサンプルを互いに遠ざかることを目的とした差別的なアプローチである。
本稿では,エンコーダの異なる層におけるコントラスト的損失を適用し,複数の表現をエンコーダから学習する多段階対等学習手法を提案する。
- 参考スコア(独自算出の注目度): 7.695214001809138
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Contrastive learning is a discriminative approach that aims at grouping
similar samples closer and diverse samples far from each other. It it an
efficient technique to train an encoder generating distinguishable and
informative representations, and it may even increase the encoder's
transferability. Most current applications of contrastive learning benefit only
a single representation from the last layer of an encoder.In this paper, we
propose a multi-level contrasitive learning approach which applies contrastive
losses at different layers of an encoder to learn multiple representations from
the encoder. Afterward, an ensemble can be constructed to take advantage of the
multiple representations for the downstream tasks. We evaluated the proposed
method on few-shot learning problems and conducted experiments using the
mini-ImageNet and the tiered-ImageNet datasets. Our model achieved the new
state-of-the-art results for both datasets, comparing to previous regular,
ensemble, and contrastive learing (single-level) based approaches.
- Abstract(参考訳): コントラスト学習(Contrastive Learning)は、類似したサンプルを互いに近づき、多様なサンプルを互いに遠ざかることを目的とした差別的なアプローチである。
これは、識別可能かつ情報的表現を生成するエンコーダを訓練する効率的な手法であり、エンコーダの転送可能性を高めることもできる。
本稿では,エンコーダの最終層からの1つの表現のみを活用し,コントラスト損失をエンコーダの異なる層で適用し,エンコーダから複数の表現を学習する多レベル対向学習手法を提案する。
その後、下流タスクの複数の表現を利用するためにアンサンブルを構築することができる。
提案手法の評価を行い,mini-ImageNet と tiered-ImageNet を用いた実験を行った。
従来の規則的,アンサンブル,コントラスト的リアリング(シングルレベル)ベースのアプローチと比較し,両データセットの最新の結果を得た。
関連論文リスト
- ProbMCL: Simple Probabilistic Contrastive Learning for Multi-label Visual Classification [16.415582577355536]
マルチラベル画像分類は、コンピュータビジョンや医用画像など、多くの領域において難しい課題である。
最近の進歩は、グラフベースとトランスフォーマーベースのメソッドを導入し、パフォーマンスを改善し、ラベルの依存関係をキャプチャしている。
本稿では,これらの課題に対処する新しいフレームワークである確率的多ラベルコントラスト学習(ProbMCL)を提案する。
論文 参考訳(メタデータ) (2024-01-02T22:15:20Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - A Semi-Paired Approach For Label-to-Image Translation [6.888253564585197]
ラベル・ツー・イメージ翻訳のための半教師付き(半ペア)フレームワークを初めて紹介する。
半ペア画像設定では、小さなペアデータとより大きなペア画像とラベルのセットにアクセスすることができる。
本稿では,この共有ネットワークのためのトレーニングアルゴリズムを提案し,非表現型クラスに着目した希少なクラスサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-23T16:13:43Z) - Multi-Label Image Classification with Contrastive Learning [57.47567461616912]
コントラスト学習の直接適用は,複数ラベルの場合においてほとんど改善できないことを示す。
完全教師付き環境下でのコントラスト学習を用いたマルチラベル分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T15:00:47Z) - Learning Discriminative Representations for Multi-Label Image
Recognition [13.13795708478267]
マルチラベルタスクにおける識別的特徴を学習するための統合深層ネットワークを提案する。
ネットワーク全体を正規化することで、よく知られたResNet-101の適用性能が大幅に向上する。
論文 参考訳(メタデータ) (2021-07-23T12:10:46Z) - Diffusion-Based Representation Learning [65.55681678004038]
教師付き信号のない表現学習を実現するために,デノナイズスコアマッチングフレームワークを拡張した。
対照的に、拡散に基づく表現学習は、デノナイジングスコアマッチング目的の新しい定式化に依存している。
同じ手法を用いて,半教師付き画像分類における最先端モデルの改善を実現する無限次元潜在符号の学習を提案する。
論文 参考訳(メタデータ) (2021-05-29T09:26:02Z) - Few-Shot Learning with Part Discovery and Augmentation from Unlabeled
Images [79.34600869202373]
帰納的バイアスは、ラベルなし画像の平坦な集合から学習でき、目に見えるクラスと目に見えないクラスの間で伝達可能な表現としてインスタンス化されることを示す。
具体的には、トランスファー可能な表現を学習するための、新しいパートベース自己教師型表現学習手法を提案する。
我々の手法は印象的な結果をもたらし、それまでの最高の教師なし手法を7.74%、9.24%上回った。
論文 参考訳(メタデータ) (2021-05-25T12:22:11Z) - CoCon: Cooperative-Contrastive Learning [52.342936645996765]
自己教師付き視覚表現学習は効率的な映像分析の鍵である。
最近の画像表現の学習の成功は、コントラスト学習がこの課題に取り組むための有望なフレームワークであることを示唆している。
コントラスト学習の協調的バリエーションを導入し、ビュー間の相補的な情報を活用する。
論文 参考訳(メタデータ) (2021-04-30T05:46:02Z) - CSI: Novelty Detection via Contrastive Learning on Distributionally
Shifted Instances [77.28192419848901]
コントラストシフトインスタンス (CSI) という,単純かつ効果的な手法を提案する。
従来のコントラスト学習法のように,サンプルを他の例と対比することに加えて,本トレーニング手法では,サンプルを分散シフトによる拡張と対比する。
本実験は, 種々の新規検出シナリオにおける本手法の優位性を実証する。
論文 参考訳(メタデータ) (2020-07-16T08:32:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。