論文の概要: Intersectional Bias in Causal Language Models
- arxiv url: http://arxiv.org/abs/2107.07691v1
- Date: Fri, 16 Jul 2021 03:46:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-19 23:19:49.812340
- Title: Intersectional Bias in Causal Language Models
- Title(参考訳): 因果言語モデルにおける交叉バイアス
- Authors: Liam Magee, Lida Ghahremanlou, Karen Soldatic, and Shanthi Robertson
- Abstract要約: 我々は,emphGPT-2およびemphGPT-NEOモデルについて検討した。
我々は、性別、宗教、障害の3つの社会的カテゴリを無条件またはゼロショットのプロンプトに組み合わせて実験を行う。
EmphGPTモデルを含む自己回帰因果モデルを用いて実施した先行試験を確認した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: To examine whether intersectional bias can be observed in language
generation, we examine \emph{GPT-2} and \emph{GPT-NEO} models, ranging in size
from 124 million to ~2.7 billion parameters. We conduct an experiment combining
up to three social categories - gender, religion and disability - into
unconditional or zero-shot prompts used to generate sentences that are then
analysed for sentiment. Our results confirm earlier tests conducted with
auto-regressive causal models, including the \emph{GPT} family of models. We
also illustrate why bias may be resistant to techniques that target single
categories (e.g. gender, religion and race), as it can also manifest, in often
subtle ways, in texts prompted by concatenated social categories. To address
these difficulties, we suggest technical and community-based approaches need to
combine to acknowledge and address complex and intersectional language model
bias.
- Abstract(参考訳): 言語生成において交叉バイアスが観測できるかどうかを調べるため,1億1400万から270億のパラメータの範囲で \emph{GPT-2} と \emph{GPT-NEO} モデルを検証した。
我々は、最大3つの社会的カテゴリー(性別、宗教、障害)を無条件またはゼロショットのプロンプトに組み合わせて、感情を解析する文を生成する実験を行う。
以上の結果から, 自己回帰因果モデルを用いて実施した初期のテストが確認できた。
また、偏見が単一のカテゴリ(例)をターゲットにした手法に抵抗する理由も説明します。
性別、宗教、人種)は、しばしば微妙な方法で、結合した社会的カテゴリーによって引き起こされるテキストの中に現れることもある。
これらの困難に対処するために、技術とコミュニティに基づくアプローチは、複雑で交叉型言語モデルのバイアスを認識し、対処するために組み合わせる必要があると提案する。
関連論文リスト
- Large Language Models Still Exhibit Bias in Long Text [14.338308312117901]
大規模言語モデルにおけるバイアスを評価するフレームワークであるLong Text Fairness Test (LTF-TEST)を紹介する。
LTF-TESTはモデル応答とそれらの背後にある推論の両方を評価することで、単純な応答では検出が難しい微妙なバイアスを明らかにする。
FT-REGARD(FT-REGARD)を提案する。
論文 参考訳(メタデータ) (2024-10-23T02:51:33Z) - The Devil is in the Neurons: Interpreting and Mitigating Social Biases in Pre-trained Language Models [78.69526166193236]
プレトレーニング言語モデル(PLM)は、社会的バイアスのような有害な情報を含むことが認識されている。
我々は,社会バイアスなどの望ましくない行動に起因する言語モデルにおいて,正確に単位(すなわちニューロン)を特定するために,sc Social Bias Neuronsを提案する。
StereoSetの以前の測定値からわかるように、我々のモデルは、低コストで言語モデリング能力を維持しながら、より高い公平性を達成する。
論文 参考訳(メタデータ) (2024-06-14T15:41:06Z) - Self-Debiasing Large Language Models: Zero-Shot Recognition and
Reduction of Stereotypes [73.12947922129261]
ステレオタイピングを減らすために,大規模言語モデルのゼロショット機能を活用している。
自己嫌悪は、9つの異なる社会集団におけるステレオタイピングの度合いを著しく低下させることが示される。
この研究が、バイアス軽減のための他のゼロショット技術に関する調査をオープンにすることを願っている。
論文 参考訳(メタデータ) (2024-02-03T01:40:11Z) - SocialStigmaQA: A Benchmark to Uncover Stigma Amplification in
Generative Language Models [8.211129045180636]
我々は、生成言語モデルにおいて、シュティグマを通して、社会的偏見の増幅を捉えるためのベンチマークを導入する。
私たちのベンチマークであるSocialStigmaQAには、ソーシャルバイアスとモデル堅牢性の両方をテストするために慎重に構築された、さまざまなプロンプトスタイルの約10Kプロンプトが含まれています。
社会的に偏りのあるアウトプットの割合は、様々なデコード戦略やスタイルにまたがって45%から59%の範囲であることがわかった。
論文 参考訳(メタデータ) (2023-12-12T18:27:44Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Evaluating Biased Attitude Associations of Language Models in an
Intersectional Context [2.891314299138311]
言語モデルは、心理学で文書化された暗黙のバイアスを埋め込んだ大規模コーパスで訓練される。
我々は、年齢、教育、性別、身長、知性、識字性、人種、宗教、性、性的指向、社会階級、体重に関するバイアスを研究する。
言語モデルは、性同一性、社会的階級、性的指向のシグナルに対して最も偏りのある態度を示す。
論文 参考訳(メタデータ) (2023-07-07T03:01:56Z) - CBBQ: A Chinese Bias Benchmark Dataset Curated with Human-AI
Collaboration for Large Language Models [52.25049362267279]
本稿では,人的専門家と生成言語モデルによって共同で構築された100万以上の質問からなる中国語バイアスベンチマークデータセットを提案する。
データセットのテストインスタンスは、手作業による厳格な品質管理を備えた3K以上の高品質テンプレートから自動的に抽出される。
大規模な実験により、データセットがモデルバイアスを検出することの有効性が実証された。
論文 参考訳(メタデータ) (2023-06-28T14:14:44Z) - An Analysis of Social Biases Present in BERT Variants Across Multiple
Languages [0.0]
多様な言語からなる単言語BERTモデルにおけるバイアスについて検討する。
文の擬似類似度に基づいて,任意のバイアスを測定するテンプレートベースの手法を提案する。
偏見探索の現在の手法は言語に依存していると結論付けている。
論文 参考訳(メタデータ) (2022-11-25T23:38:08Z) - How True is GPT-2? An Empirical Analysis of Intersectional Occupational
Biases [50.591267188664666]
下流のアプリケーションは、自然言語モデルに含まれるバイアスを継承するリスクがある。
一般的な生成言語モデルであるGPT-2の作業バイアスを分析した。
特定の仕事について、GPT-2は米国におけるジェンダーと民族の社会的偏見を反映しており、場合によってはジェンダー・パリティの傾向を反映している。
論文 参考訳(メタデータ) (2021-02-08T11:10:27Z) - Towards Controllable Biases in Language Generation [87.89632038677912]
本研究では、特定の人口集団の言及を含む入力プロンプトによって生成されたテキストの社会的バイアスを誘導する手法を開発した。
1 つの人口統計学において負のバイアスを誘発し、もう1 つの人口統計学において正のバイアスを誘導し、2 つのシナリオを分析する。
論文 参考訳(メタデータ) (2020-05-01T08:25:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。