論文の概要: Constrained Feedforward Neural Network Training via Reachability
Analysis
- arxiv url: http://arxiv.org/abs/2107.07696v1
- Date: Fri, 16 Jul 2021 04:03:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-19 14:45:00.875676
- Title: Constrained Feedforward Neural Network Training via Reachability
Analysis
- Title(参考訳): 到達可能性解析によるfeedforwardニューラルネットワークトレーニング
- Authors: Long Kiu Chung, Adam Dai, Derek Knowles, Shreyas Kousik, Grace X. Gao
- Abstract要約: 安全上の制約に従うためにニューラルネットワークをトレーニングすることは、依然としてオープンな課題である。
本研究は, 整列線形単位(ReLU)非線形性を持つフィードフォワードニューラルネットワークを同時に訓練し, 検証する制約付き手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have recently become popular for a wide variety of uses, but
have seen limited application in safety-critical domains such as robotics near
and around humans. This is because it remains an open challenge to train a
neural network to obey safety constraints. Most existing safety-related methods
only seek to verify that already-trained networks obey constraints, requiring
alternating training and verification. Instead, this work proposes a
constrained method to simultaneously train and verify a feedforward neural
network with rectified linear unit (ReLU) nonlinearities. Constraints are
enforced by computing the network's output-space reachable set and ensuring
that it does not intersect with unsafe sets; training is achieved by
formulating a novel collision-check loss function between the reachable set and
unsafe portions of the output space. The reachable and unsafe sets are
represented by constrained zonotopes, a convex polytope representation that
enables differentiable collision checking. The proposed method is demonstrated
successfully on a network with one nonlinearity layer and approximately 50
parameters.
- Abstract(参考訳): 近年、ニューラルネットワークは様々な用途で普及しているが、人間近辺や周囲のロボティクスのような安全上重要な分野に限定的に応用されている。
これは、安全制約に従うためにニューラルネットワークをトレーニングすることは、まだ未解決の課題であるからです。
既存の安全関連手法の多くは、既に訓練済みのネットワークが制約に従うことを確認し、トレーニングと検証を交互に行う必要がある。
そこで本研究では,修正線形単位(ReLU)非線形性を持つフィードフォワードニューラルネットワークを同時にトレーニングし,検証する制約付き手法を提案する。
制約は、ネットワークの出力空間到達可能な集合を計算し、それが安全でない集合と干渉しないことを保証することで実行され、出力空間の到達可能な集合と安全でない部分の間の新しい衝突チェック損失関数を定式化して訓練を行う。
到達可能な集合と安全でない集合は、微分可能な衝突チェックを可能にする凸ポリトープ表現である制約付きゾノトープで表される。
提案手法は,1つの非線形層と約50パラメータを有するネットワーク上で有効である。
関連論文リスト
- Safe Reach Set Computation via Neural Barrier Certificates [46.1784503246807]
本稿では,自律システムのオンライン安全性検証のための新しい手法を提案する。
我々のアプローチでは、パラメータ化されたニューラルネットワークが与えられた初期セット、安全でないセット、時間的地平線に依存する障壁証明書を使用する。
このようなネットワークは、状態空間の領域からサンプリングされたシステムシミュレーションを用いて、効率的にオフラインで訓練される。
論文 参考訳(メタデータ) (2024-04-29T15:49:37Z) - Robust Stochastically-Descending Unrolled Networks [85.6993263983062]
Deep Unrolling(ディープ・アンローリング)は、トレーニング可能なニューラルネットワークの層に切り捨てられた反復アルゴリズムをアンロールする、新たな学習最適化手法である。
アンロールネットワークの収束保証と一般化性は、いまだにオープンな理論上の問題であることを示す。
提案した制約の下で訓練されたアンロールアーキテクチャを2つの異なるアプリケーションで数値的に評価する。
論文 参考訳(メタデータ) (2023-12-25T18:51:23Z) - DeepSaDe: Learning Neural Networks that Guarantee Domain Constraint
Satisfaction [8.29487992932196]
本稿では,ニューラルネットワークを訓練し,様々な制約を課し,その制約が全ての可能な予測によって満たされることを保証するアプローチを提案する。
私たちのアプローチは、さまざまなドメイン制約を強制するのに十分な柔軟性があり、ニューラルネットワークでそれらを保証できます。
論文 参考訳(メタデータ) (2023-03-02T10:40:50Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - Zonotope Domains for Lagrangian Neural Network Verification [102.13346781220383]
我々は、ディープニューラルネットワークを多くの2層ニューラルネットワークの検証に分解する。
我々の手法は線形プログラミングとラグランジアンに基づく検証技術の両方により改善された境界を与える。
論文 参考訳(メタデータ) (2022-10-14T19:31:39Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
本稿では,ニューラルネットワークを用いた閉ループシステムの安全性検証のための後方到達性アプローチを提案する。
フィードバックループにおけるNNの存在は、その活性化関数の非線形性や、NNモデルは一般に可逆的ではないため、ユニークな問題セットを示す。
フィードフォワードNNで表される制御ポリシを持つ線形系と非線形系のBP過近似を計算するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-28T13:17:28Z) - OVERT: An Algorithm for Safety Verification of Neural Network Control
Policies for Nonlinear Systems [31.3812947670948]
本稿では,ニューラルネットワーク制御ポリシーの安全性検証のための音響アルゴリズムOVERTを提案する。
OVERT の中心的な概念は、最適にきつく片方向の線形境界を持つ非線形関数を抽象化することである。
オーバートは、到達可能な集合の時間的および厳密性の両方において、既存の方法と好意的に比較する。
論文 参考訳(メタデータ) (2021-08-03T00:41:27Z) - Artificial Neural Networks generated by Low Discrepancy Sequences [59.51653996175648]
我々は、高密度ネットワークグラフ上のランダムウォーキングとして、人工ニューラルネットワークを生成する。
このようなネットワークはスクラッチからスパースを訓練することができ、高密度ネットワークをトレーニングし、その後圧縮する高価な手順を避けることができる。
我々は,低差分シーケンスで生成された人工ニューラルネットワークが,より低い計算複雑性で,密度の高いニューラルネットワークの到達範囲内で精度を達成できることを実証した。
論文 参考訳(メタデータ) (2021-03-05T08:45:43Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Reach-SDP: Reachability Analysis of Closed-Loop Systems with Neural
Network Controllers via Semidefinite Programming [19.51345816555571]
本稿では,ニューラルネットワークを用いた線形時間変化システムの安全性検証のための新しいフォワードリーチビリティ解析手法を提案する。
半有限計画法を用いて、これらの近似到達可能な集合を計算できることが示される。
提案手法は,まずディープニューラルネットワークを用いて非線形モデル予測制御器を近似し,その解析ツールを用いて閉ループシステムの有限時間到達性と制約満足度を証明した。
論文 参考訳(メタデータ) (2020-04-16T18:48:25Z) - Reachability Analysis for Feed-Forward Neural Networks using Face
Lattices [10.838397735788245]
本稿では,ニューラルネットワークの正確な到達可能な集合を入力集合に並列化する手法を提案する。
我々の手法は、出力セットが与えられた完全な入力セットを構築することができ、安全違反につながる任意の入力を追跡することができる。
論文 参考訳(メタデータ) (2020-03-02T22:23:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。