論文の概要: Provably-Safe Neural Network Training Using Hybrid Zonotope Reachability Analysis
- arxiv url: http://arxiv.org/abs/2501.13023v2
- Date: Tue, 01 Apr 2025 01:01:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-02 16:16:39.945292
- Title: Provably-Safe Neural Network Training Using Hybrid Zonotope Reachability Analysis
- Title(参考訳): ハイブリッドゾノトープの到達可能性解析を用いた安全なニューラルネットワークトレーニング
- Authors: Long Kiu Chung, Shreyas Kousik,
- Abstract要約: 安全クリティカルな制御アプリケーションにおいて、ニューラルネットワークの制約を強制することは困難である。
本稿では,線形整列単位(ReLU)非線形性を持つニューラルネットワークに対して,非アボジン入力セットの正確な画像化を促進する手法を提案する。
安全クリティカルシステムへの非アボジン入力のための前方不変ニューラルネットワークコントローラをトレーニングすることにより,本手法の実用性を実証する。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Even though neural networks are being increasingly deployed in safety-critical control applications, it remains difficult to enforce constraints on their output, meaning that it is hard to guarantee safety in such settings. While many existing methods seek to verify a neural network's satisfaction of safety constraints, few address how to correct an unsafe network. The handful of works that extract a training signal from verification cannot handle non-convex sets, and are either conservative or slow. To begin addressing these challenges, this work proposes a neural network training method that can encourage the exact image of a non-convex input set for a neural network with rectified linear unit (ReLU) nonlinearities to avoid a non-convex unsafe region. This is accomplished by reachability analysis with scaled hybrid zonotopes, a modification of the existing hybrid zonotope set representation that enables parameterized scaling of non-convex polytopic sets with a differentiable collision check via mixed-integer linear programs (MILPs). The proposed method was shown to be effective and fast for networks with up to 240 neurons, with the computational complexity dominated by inverse operations on matrices that scale linearly in size with the number of neurons and complexity of input and unsafe sets. We demonstrate the practicality of our method by training a forward-invariant neural network controller for a non-convex input set to an affine system, as well as generating safe reach-avoid plans for a black-box dynamical system.
- Abstract(参考訳): ニューラルネットワークは、安全クリティカルな制御アプリケーションにますますデプロイされているが、出力に対する制約を強制することは困難であり、そのような設定で安全性を保証することは難しい。
既存の多くの手法は、ニューラルネットワークの安全制約に対する満足度を検証することを目指しているが、安全でないネットワークの修正方法に対処する方法はほとんどない。
検証からトレーニング信号を抽出する少数の作業は、非凸集合を扱うことができず、保守的または遅い。
これらの課題に対処するために、この研究は、修正線形単位(ReLU)非線形性を持つニューラルネットワークに対して、非凸な入力セットの正確なイメージを奨励し、非凸な安全領域を避けるニューラルネットワークトレーニング手法を提案する。
これは、混合整数線形プログラム(MILP)による異種衝突チェックによる非凸ポリトープ集合のパラメータ化スケーリングを可能にする、既存のハイブリッドゾノトープ集合表現の修正であるスケールドハイブリッドゾノトープによる到達性解析によって達成される。
提案手法は最大240個のニューロンを持つネットワークに対して有効かつ高速であることが示され、計算複雑性は、ニューロンの数と入力と安全でない集合の複雑さとを線形にスケールする行列上の逆演算に支配されている。
我々は,アフィン系への非凸入力セットのための前方不変ニューラルネットワークコントローラを訓練し,ブラックボックス力学系に対する安全なリーチアビド計画を生成することにより,本手法の実用性を実証する。
関連論文リスト
- Efficient Reachability Analysis for Convolutional Neural Networks Using Hybrid Zonotopes [4.32258850473064]
フィードフォワードニューラルネットワークの既存の伝播に基づく到達可能性分析手法は、スケーラビリティと精度の両方を達成するのに苦労することが多い。
この研究は、畳み込みニューラルネットワークの到達可能な集合を計算するための、新しいセットベースのアプローチを示す。
論文 参考訳(メタデータ) (2025-03-13T19:45:26Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
ディープニューラルネットワーク(DNN)は多くのシナリオで異常な結果を示した強力なツールです。
しかし、それらの複雑な設計と透明性の欠如は、現実世界のアプリケーションに適用する際の安全性上の懸念を提起する。
DNNの形式的検証(FV)は、安全面の証明可能な保証を提供する貴重なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-10T13:51:25Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
本稿では,ニューラルネットワークを用いた閉ループシステムの安全性検証のための後方到達性アプローチを提案する。
フィードバックループにおけるNNの存在は、その活性化関数の非線形性や、NNモデルは一般に可逆的ではないため、ユニークな問題セットを示す。
フィードフォワードNNで表される制御ポリシを持つ線形系と非線形系のBP過近似を計算するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-28T13:17:28Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
暗黙のニューラルネットワークは、競合性能とメモリ消費の削減を提供する。
入力逆流の摂動に関して、それらは不安定なままである。
本稿では,暗黙的ニューラルネットワークのロバスト性検証のための理論的および計算的枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-10T03:08:55Z) - OVERT: An Algorithm for Safety Verification of Neural Network Control
Policies for Nonlinear Systems [31.3812947670948]
本稿では,ニューラルネットワーク制御ポリシーの安全性検証のための音響アルゴリズムOVERTを提案する。
OVERT の中心的な概念は、最適にきつく片方向の線形境界を持つ非線形関数を抽象化することである。
オーバートは、到達可能な集合の時間的および厳密性の両方において、既存の方法と好意的に比較する。
論文 参考訳(メタデータ) (2021-08-03T00:41:27Z) - Constrained Feedforward Neural Network Training via Reachability
Analysis [0.0]
安全上の制約に従うためにニューラルネットワークをトレーニングすることは、依然としてオープンな課題である。
本研究は, 整列線形単位(ReLU)非線形性を持つフィードフォワードニューラルネットワークを同時に訓練し, 検証する制約付き手法を提案する。
論文 参考訳(メタデータ) (2021-07-16T04:03:01Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
本研究では,探索学習と表現学習の両方が重要な役割を果たす課題を解決するために,ニューラルネットワークの帯域について検討する。
破滅的な忘れ込みに対して耐性があり、完全にオンラインである可能性の高いマッチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-07T14:19:07Z) - PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier [1.1011268090482575]
我々は、ReLU NNの最も一般的な安全仕様を正式に検証するための新しいアプローチを導入する。
我々は, 線形実現可能性チェッカーとしてだけでなく, 解法で許容される緩和量のペナルティ化の手段として, 凸解法を用いる。
論文 参考訳(メタデータ) (2020-06-18T21:33:07Z) - Reach-SDP: Reachability Analysis of Closed-Loop Systems with Neural
Network Controllers via Semidefinite Programming [19.51345816555571]
本稿では,ニューラルネットワークを用いた線形時間変化システムの安全性検証のための新しいフォワードリーチビリティ解析手法を提案する。
半有限計画法を用いて、これらの近似到達可能な集合を計算できることが示される。
提案手法は,まずディープニューラルネットワークを用いて非線形モデル予測制御器を近似し,その解析ツールを用いて閉ループシステムの有限時間到達性と制約満足度を証明した。
論文 参考訳(メタデータ) (2020-04-16T18:48:25Z) - Reachability Analysis for Feed-Forward Neural Networks using Face
Lattices [10.838397735788245]
本稿では,ニューラルネットワークの正確な到達可能な集合を入力集合に並列化する手法を提案する。
我々の手法は、出力セットが与えられた完全な入力セットを構築することができ、安全違反につながる任意の入力を追跡することができる。
論文 参考訳(メタデータ) (2020-03-02T22:23:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。