Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by
Leveraging Lightweight All-ConvNet and Transfer Learning
- URL: http://arxiv.org/abs/2305.08014v3
- Date: Mon, 19 Feb 2024 23:24:32 GMT
- Title: Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by
Leveraging Lightweight All-ConvNet and Transfer Learning
- Authors: Md. Rabiul Islam, Daniel Massicotte, Philippe Y. Massicotte, and
Wei-Ping Zhu
- Abstract summary: Gesture recognition using low-resolution instantaneous HD-sEMG images opens up new avenues for the development of more fluid and natural muscle-computer interfaces.
The data variability between inter-session and inter-subject scenarios presents a great challenge.
Existing approaches employed very large and complex deep ConvNet or 2SRNN-based domain adaptation methods to approximate the distribution shift caused by these inter-session and inter-subject data variability.
We propose a lightweight All-ConvNet+TL model that leverages lightweight All-ConvNet and transfer learning (TL) for the enhancement of inter-session and inter-subject gesture recognition
- Score: 17.535392299244066
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Gesture recognition using low-resolution instantaneous HD-sEMG images opens
up new avenues for the development of more fluid and natural muscle-computer
interfaces. However, the data variability between inter-session and
inter-subject scenarios presents a great challenge. The existing approaches
employed very large and complex deep ConvNet or 2SRNN-based domain adaptation
methods to approximate the distribution shift caused by these inter-session and
inter-subject data variability. Hence, these methods also require learning over
millions of training parameters and a large pre-trained and target domain
dataset in both the pre-training and adaptation stages. As a result, it makes
high-end resource-bounded and computationally very expensive for deployment in
real-time applications. To overcome this problem, we propose a lightweight
All-ConvNet+TL model that leverages lightweight All-ConvNet and transfer
learning (TL) for the enhancement of inter-session and inter-subject gesture
recognition performance. The All-ConvNet+TL model consists solely of
convolutional layers, a simple yet efficient framework for learning invariant
and discriminative representations to address the distribution shifts caused by
inter-session and inter-subject data variability. Experiments on four datasets
demonstrate that our proposed methods outperform the most complex existing
approaches by a large margin and achieve state-of-the-art results on
inter-session and inter-subject scenarios and perform on par or competitively
on intra-session gesture recognition. These performance gaps increase even more
when a tiny amount (e.g., a single trial) of data is available on the target
domain for adaptation. These outstanding experimental results provide evidence
that the current state-of-the-art models may be overparameterized for
sEMG-based inter-session and inter-subject gesture recognition tasks.
Related papers
- Heterogeneous Domain Adaptation and Equipment Matching: DANN-based
Alignment with Cyclic Supervision (DBACS) [3.4519649635864584]
This work introduces the Domain Adaptation Neural Network with Cyclic Supervision (DBACS) approach.
DBACS addresses the issue of model generalization through domain adaptation, specifically for heterogeneous data.
This work also includes subspace alignment and a multi-view learning that deals with heterogeneous representations.
arXiv Detail & Related papers (2023-01-03T10:56:25Z) - RAIS: Robust and Accurate Interactive Segmentation via Continual
Learning [16.382862088005087]
We propose RAIS, a robust and accurate architecture for interactive segmentation with continuous learning.
For efficient learning on the test set, we propose a novel optimization strategy to update global and local parameters.
Our method also shows its robustness in the datasets of remote sensing and medical imaging.
arXiv Detail & Related papers (2022-10-20T03:05:44Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - DANCE: DAta-Network Co-optimization for Efficient Segmentation Model
Training and Inference [85.02494022662505]
DANCE is an automated simultaneous data-network co-optimization for efficient segmentation model training and inference.
It integrates automated data slimming which adaptively downsamples/drops input images and controls their corresponding contribution to the training loss guided by the images' spatial complexity.
Experiments and ablating studies demonstrate that DANCE can achieve "all-win" towards efficient segmentation.
arXiv Detail & Related papers (2021-07-16T04:58:58Z) - Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss [25.798361683744684]
Domain-Agnostic Contrastive Learning (DACL) is a two-stage unsupervised domain adaptation framework with cyclic adversarial training and contrastive loss.
Our proposed approach achieves better performance in the monocular depth estimation task compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-10T07:06:03Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.