論文の概要: Exploiting generative self-supervised learning for the assessment of
biological images with lack of annotations: a COVID-19 case-study
- arxiv url: http://arxiv.org/abs/2107.07761v1
- Date: Fri, 16 Jul 2021 08:36:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-19 14:33:26.459341
- Title: Exploiting generative self-supervised learning for the assessment of
biological images with lack of annotations: a COVID-19 case-study
- Title(参考訳): アノテーションの欠如による生物画像評価のための創発的自己教師学習--新型コロナウイルスのケーススタディ
- Authors: Alessio Mascolini, Dario Cardamone, Francesco Ponzio, Santa Di
Cataldo, Elisa Ficarra
- Abstract要約: GAN-DLはStyleGAN2アーキテクチャに基づく差別化学習機である。
本手法は, 分類作業だけでなく, 線量応答曲線の導出にも有効であることを示す。
- 参考スコア(独自算出の注目度): 0.41998444721319217
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Computer-aided analysis of biological images typically requires extensive
training on large-scale annotated datasets, which is not viable in many
situations. In this paper we present GAN-DL, a Discriminator Learner based on
the StyleGAN2 architecture, which we employ for self-supervised image
representation learning in the case of fluorescent biological images. We show
that Wasserstein Generative Adversarial Networks combined with linear Support
Vector Machines enable high-throughput compound screening based on raw images.
We demonstrate this by classifying active and inactive compounds tested for the
inhibition of SARS-CoV-2 infection in VERO and HRCE cell lines. In contrast to
previous methods, our deep learning based approach does not require any
annotation besides the one that is normally collected during the sample
preparation process. We test our technique on the RxRx19a Sars-CoV-2 image
collection. The dataset consists of fluorescent images that were generated to
assess the ability of regulatory-approved or in late-stage clinical trials
compound to modulate the in vitro infection from SARS-CoV-2 in both VERO and
HRCE cell lines. We show that our technique can be exploited not only for
classification tasks, but also to effectively derive a dose response curve for
the tested treatments, in a self-supervised manner. Lastly, we demonstrate its
generalization capabilities by successfully addressing a zero-shot learning
task, consisting in the categorization of four different cell types of the
RxRx1 fluorescent images collection.
- Abstract(参考訳): 生物画像のコンピュータ支援分析は、多くの場合、大規模な注釈付きデータセットの広範な訓練を必要とする。
本稿では,StyleGAN2アーキテクチャに基づく識別器学習者であるGAN-DLについて述べる。
本稿では, 線形サポートベクトルマシンとワッサーシュタイン生成共振器ネットワークが組み合わさって, 原画像に基づく高スループット複合スクリーニングを可能にすることを示す。
VEROおよびHRCE細胞株のSARS-CoV-2感染抑制試験において,活性および不活性化合物の分類を行った。
従来の手法とは対照的に,ディープラーニングに基づくアプローチでは,サンプル作成プロセス中に通常収集されるアノテーション以外のアノテーションは不要である。
我々はRxRx19a Sars-CoV-2画像の収集実験を行った。
このデータセットは、VEROおよびHRCE細胞株のSARS-CoV-2からのin vitro感染を調節するための規制承認または後期臨床試験化合物の能力を評価するために生成された蛍光画像からなる。
本手法は, 分類作業だけでなく, 被験者に対する線量反応曲線を, 自己教師ありで効果的に導出できることを示す。
最後に,RxRx1蛍光画像コレクションの4つの異なるセルタイプを分類し,ゼロショット学習タスクをうまく処理することで,その一般化能力を実証する。
関連論文リスト
- Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Semi-supervised GAN for Bladder Tissue Classification in Multi-Domain
Endoscopic Images [10.48945682277992]
本稿では,3つの主要コンポーネントからなるGANに基づく半サプライズドジェネレーティブ・アドリアル・ネットワーク(GAN)を提案する。
組織分類法で得られた平均分類精度、精度、リコールは、それぞれ0.90, 0.88, 0.89である。
論文 参考訳(メタデータ) (2022-12-21T21:32:36Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - Physiology-based simulation of the retinal vasculature enables
annotation-free segmentation of OCT angiographs [8.596819713822477]
提案するパイプラインは,大量のリアルなOCTA画像を,本質的に一致する基底真理ラベルで合成する。
提案手法は,1) 様々な網膜叢をモデル化した生理的シミュレーション,2) 物理に基づく画像拡張のスイートの2つの新しい構成要素を基礎にしている。
論文 参考訳(メタデータ) (2022-07-22T14:22:22Z) - Stain based contrastive co-training for histopathological image analysis [61.87751502143719]
本稿では,ヒストリボリューション画像の分類のための,新しい半教師付き学習手法を提案する。
我々は、半教師付き学習フレームワークを作成するために、パッチレベルのアノテーションと、新しいコトレーニング損失を併用した強力な監視を採用する。
透明細胞腎細胞および前立腺癌に対するアプローチを評価し,最先端の半教師あり学習法の改善を実証した。
論文 参考訳(メタデータ) (2022-06-24T22:25:31Z) - Colorectal Polyp Classification from White-light Colonoscopy Images via
Domain Alignment [57.419727894848485]
大腸内視鏡画像からの正確な診断を支援するためには,コンピュータ支援診断システムが必要である。
これまでのほとんどの研究では、Narrow-Band Imaging (NBI) や他の拡張画像を用いて、ポリプの分化モデルの開発を試みている。
正確な大腸ポリープ分類のための教師/学生アーキテクチャに基づく新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-05T09:31:46Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z) - An interpretable automated detection system for FISH-based HER2 oncogene
amplification testing in histo-pathological routine images of breast and
gastric cancer diagnostics [0.2479153065703935]
本研究では,HER2遺伝子増幅試験におけるFISH画像の評価を自動化する,解釈可能な深層学習パイプラインを開発した。
病理学的評価を模倣し、インスタンスセグメンテーションネットワークに基づく相間核の検出と局在に依存している。
画像分類と物体検出畳み込みニューラルネットワーク(CNN)の助けを借りて、各核内の蛍光信号の局在と分類を行う。
論文 参考訳(メタデータ) (2020-05-25T12:14:38Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
新型コロナウイルスは肺炎に似た呼吸器症候群である。
科学者、研究者、医療専門家は、肺感染症の特定によって、新型コロナウイルスの迅速かつ自動化された診断に貢献している。
本稿では,様々な最先端ディープラーニング手法における非バイアスの微調整学習(トランスファーラーニング)に対するランダムなオーバーサンプリングと重み付きクラス損失関数アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-23T10:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。