Graph Representation Learning for Road Type Classification
- URL: http://arxiv.org/abs/2107.07791v1
- Date: Fri, 16 Jul 2021 09:32:58 GMT
- Title: Graph Representation Learning for Road Type Classification
- Authors: Zahra Gharaee and Shreyas Kowshik and Oliver Stromann and Michael
Felsberg
- Abstract summary: We present a learning-based approach to graph representations of road networks employing state-of-the-art graph convolutional neural networks.
Our approach is applied to realistic road networks of 17 cities from Open Street Map.
- Score: 13.227651826285014
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a novel learning-based approach to graph representations of road
networks employing state-of-the-art graph convolutional neural networks. Our
approach is applied to realistic road networks of 17 cities from Open Street
Map. While edge features are crucial to generate descriptive graph
representations of road networks, graph convolutional networks usually rely on
node features only. We show that the highly representative edge features can
still be integrated into such networks by applying a line graph transformation.
We also propose a method for neighborhood sampling based on a topological
neighborhood composed of both local and global neighbors. We compare the
performance of learning representations using different types of neighborhood
aggregation functions in transductive and inductive tasks and in supervised and
unsupervised learning. Furthermore, we propose a novel aggregation approach,
Graph Attention Isomorphism Network, GAIN. Our results show that GAIN
outperforms state-of-the-art methods on the road type classification problem.
Related papers
- Improving Graph Neural Networks by Learning Continuous Edge Directions [0.0]
Graph Neural Networks (GNNs) traditionally employ a message-passing mechanism that resembles diffusion over undirected graphs.
Our key insight is to assign fuzzy edge directions to the edges of a graph so that features can preferentially flow in one direction between nodes.
We propose a general framework, called Continuous Edge Direction (CoED) GNN, for learning on graphs with fuzzy edges.
arXiv Detail & Related papers (2024-10-18T01:34:35Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Edge-Featured Graph Attention Network [7.0629162428807115]
We present edge-featured graph attention networks (EGATs) to extend the use of graph neural networks to those tasks learning on graphs with both node and edge features.
By reforming the model structure and the learning process, the new models can accept node and edge features as inputs, incorporate the edge information into feature representations, and iterate both node and edge features in a parallel but mutual way.
arXiv Detail & Related papers (2021-01-19T15:08:12Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Spectral Embedding of Graph Networks [76.27138343125985]
We introduce an unsupervised graph embedding that trades off local node similarity and connectivity, and global structure.
The embedding is based on a generalized graph Laplacian, whose eigenvectors compactly capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2020-09-30T04:59:10Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMN is a novel framework which utilizes node feature information and the higher order local structure of the graph.
It will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.
arXiv Detail & Related papers (2020-07-31T04:18:20Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
Graph convolutional networks have been successful in addressing graph-based tasks such as semi-supervised node classification.
We propose a method to automatically build compact and task-specific graph convolutional networks.
arXiv Detail & Related papers (2020-03-27T08:32:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.