論文の概要: Efficient proximal gradient algorithms for joint graphical lasso
- arxiv url: http://arxiv.org/abs/2107.07799v1
- Date: Fri, 16 Jul 2021 09:59:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-19 14:33:40.319530
- Title: Efficient proximal gradient algorithms for joint graphical lasso
- Title(参考訳): 関節グラフラッソの効率的な近位勾配アルゴリズム
- Authors: Jie Chen, Ryosuke Shimmura and Joe Suzuki
- Abstract要約: スパースデータから非方向のグラフィカルモデルを学ぶことを検討する。
JGL(ジョイント・グラフィカル・ラッソ)のバックトラックオプションを伴わない近位勾配法を提案する。
提案アルゴリズムは高い精度と精度を達成でき、その効率は最先端のアルゴリズムと競合する。
- 参考スコア(独自算出の注目度): 9.752101654013053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider learning an undirected graphical model from sparse data. While
several efficient algorithms have been proposed for graphical lasso (GL), the
alternating direction method of multipliers (ADMM) is the main approach taken
concerning for joint graphical lasso (JGL). We propose proximal gradient
procedures with and without a backtracking option for the JGL. These procedures
are first-order and relatively simple, and the subproblems are solved
efficiently in closed form. We further show the boundedness for the solution of
the JGL problem and the iterations in the algorithms. The numerical results
indicate that the proposed algorithms can achieve high accuracy and precision,
and their efficiency is competitive with state-of-the-art algorithms.
- Abstract(参考訳): スパースデータから非方向のグラフィカルモデルを学ぶことを検討する。
グラフィカル・ラッソ (GL) に対していくつかの効率的なアルゴリズムが提案されているが、乗算器の交互方向法 (ADMM) がジョイント・グラフィカル・ラッソ (JGL) の主要なアプローチである。
本稿では,JGL のバックトラックオプションを伴わない近位勾配法を提案する。
これらの手順は1次で比較的単純であり、サブプロブレムは閉じた形で効率的に解かれる。
さらに、JGL問題の解法とアルゴリズムの反復に対する有界性を示す。
数値計算の結果,提案アルゴリズムは高精度かつ精度が高く,その効率は最先端のアルゴリズムと競合することがわかった。
関連論文リスト
- Learning the hub graphical Lasso model with the structured sparsity via
an efficient algorithm [1.0923877073891446]
ハブグラフィカルモデルを推定する二相アルゴリズムを提案する。
提案アルゴリズムはまず,乗算器の2つの交互方向法を用いてよい初期点を生成する。
その後、半滑らかなニュートン(SSN)ベースの拡張ラグランジアン法(ALM)を温め、実用的なタスクに十分正確な解を計算する。
論文 参考訳(メタデータ) (2023-08-17T08:24:28Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning
Problems [0.7614628596146599]
古典的なSGDフレームワークにおける適応的なステップ長選択のための新しいアルゴリズムを提案する。
妥当な条件下では、アルゴリズムは十分に確立された理論的な要件に従ってステップ長を生成する。
このアルゴリズムは,手動チューニングから得られる最良ステップ長に匹敵するステップ長を生成することができることを示す。
論文 参考訳(メタデータ) (2023-05-17T06:22:11Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
本稿では、分散正規化損失最小化問題に対する2倍加速勾配降下法(ADSGD)を提案する。
まず、ADSGDが線形収束率を達成でき、全体的な計算複雑性を低減できることを示す。
論文 参考訳(メタデータ) (2022-08-11T22:27:22Z) - Learning Sparse Graphs via Majorization-Minimization for Smooth Node
Signals [8.140698535149042]
本稿では,その隣接行列を推定することにより,スパース重み付きグラフを学習するアルゴリズムを提案する。
提案アルゴリズムは,本論文におけるいくつかの既存手法よりも,平均反復回数の観点から,より高速に収束することを示す。
論文 参考訳(メタデータ) (2022-02-06T17:06:13Z) - Graph Matching via Optimal Transport [11.93151370164898]
グラフマッチング問題の解決は、運用研究、コンピュータビジョン、神経科学などへの応用により、ますます重要になっている。
現在の最先端のアルゴリズムは、非常に大きなグラフのマッチングには非効率であるが、精度は高い。
我々は,最新のグラフマッチングアルゴリズム "FAQ" (Vogelstein, 2015) を改良した GOAT を,その線形和割り当てステップを Cuturi (2013) の "Lightspeed Optimal Transport" メソッドに置き換える。
論文 参考訳(メタデータ) (2021-11-09T19:18:18Z) - Individually Fair Gradient Boosting [86.1984206610373]
我々は、グラデーションブーストにおいて個人の公平性を強制するタスクを検討する。
アルゴリズムがグローバルに収束し、一般化することを示す。
また,アルゴリズムバイアスの影響を受けやすい3つのml問題に対するアルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2021-03-31T03:06:57Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - Optimal and Practical Algorithms for Smooth and Strongly Convex
Decentralized Optimization [21.555331273873175]
ネットワークのノードにまたがるスムーズな凸関数の和を分散化最小化する作業について検討する。
本稿では,この分散最適化問題に対する2つの新しいアルゴリズムを提案し,複雑性を保証する。
論文 参考訳(メタデータ) (2020-06-21T11:23:20Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。