Online Graph Topology Learning from Matrix-valued Time Series
- URL: http://arxiv.org/abs/2107.08020v4
- Date: Sun, 8 Sep 2024 17:02:48 GMT
- Title: Online Graph Topology Learning from Matrix-valued Time Series
- Authors: Yiye Jiang, Jérémie Bigot, Sofian Maabout,
- Abstract summary: The focus is on the statistical analysis of matrix-valued time series, where data is collected over a network of sensors.
The goal is to identify the dependency structure among these sensors and represent it with a graph.
Online algorithms are adapted to these augmented data models, allowing for simultaneous learning of the graph and trend from streaming samples.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The focus is on the statistical analysis of matrix-valued time series, where data is collected over a network of sensors, typically at spatial locations, over time. Each sensor records a vector of features at each time point, creating a vectorial time series for each sensor. The goal is to identify the dependency structure among these sensors and represent it with a graph. When only one feature per sensor is observed, vector auto-regressive (VAR) models are commonly used to infer Granger causality, resulting in a causal graph. The first contribution extends VAR models to matrix-variate models for the purpose of graph learning. Additionally, two online procedures are proposed for both low and high dimensions, enabling rapid updates of coefficient estimates as new samples arrive. In the high-dimensional setting, a novel Lasso-type approach is introduced, and homotopy algorithms are developed for online learning. An adaptive tuning procedure for the regularization parameter is also provided. Given that the application of auto-regressive models to data typically requires detrending, which is not feasible in an online context, the proposed AR models are augmented by incorporating trend as an additional parameter, with a particular focus on periodic trends. The online algorithms are adapted to these augmented data models, allowing for simultaneous learning of the graph and trend from streaming samples. Numerical experiments using both synthetic and real data demonstrate the effectiveness of the proposed methods.
Related papers
- Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Deep Graph Stream SVDD: Anomaly Detection in Cyber-Physical Systems [17.373668215331737]
We propose a new approach called deep graph vector data description (SVDD) for anomaly detection.
We first use a transformer to preserve both short and long temporal patterns monitoring data in temporal embeddings.
We cluster these embeddings according to sensor type and utilize them to estimate the change in connectivity between various sensors to construct a new weighted graph.
arXiv Detail & Related papers (2023-02-24T22:14:39Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
This paper tackles the problem of learning effective models to reconstruct missing data points.
We propose a class of attention-based architectures, that given a set of highly sparse observations, learn a representation for points in time and space.
Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies.
arXiv Detail & Related papers (2022-05-26T16:40:48Z) - PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting [4.14360329494344]
We propose a novel traffic forecasting framework called Progressive Graph Convolutional Network (PGCN)
PGCN constructs a set of graphs by progressively adapting to online input data during the training and testing phases.
The proposed model achieves state-of-the-art performance with consistency in all datasets.
arXiv Detail & Related papers (2022-02-18T02:15:44Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - PSEUDo: Interactive Pattern Search in Multivariate Time Series with
Locality-Sensitive Hashing and Relevance Feedback [3.347485580830609]
PSEUDo is an adaptive feature learning technique for exploring visual patterns in multi-track sequential data.
Our algorithm features sub-linear training and inference time.
We demonstrate superiority of PSEUDo in terms of efficiency, accuracy, and steerability.
arXiv Detail & Related papers (2021-04-30T13:00:44Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - Inductive Graph Neural Networks for Spatiotemporal Kriging [13.666589510218738]
We develop an inductive graph neural network model to recover data for unsampled sensors on a network/graph structure.
Empirical results on several real-worldtemporal datasets demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2020-06-13T01:23:44Z) - Auto-decoding Graphs [91.3755431537592]
The generative model is an auto-decoder that learns to synthesize graphs from latent codes.
Graphs are synthesized using self-attention modules that are trained to identify likely connectivity patterns.
arXiv Detail & Related papers (2020-06-04T14:23:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.