論文の概要: An unsupervised feature learning for quantum-classical convolutional
network with applications to fault detection
- arxiv url: http://arxiv.org/abs/2107.08171v1
- Date: Sat, 17 Jul 2021 03:16:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-22 01:11:25.974259
- Title: An unsupervised feature learning for quantum-classical convolutional
network with applications to fault detection
- Title(参考訳): 量子古典的畳み込みネットワークのための教師なし特徴学習と故障検出への応用
- Authors: Tong Dou, Zhenwei Zhou, Kaiwei Wang, Shilu Yan, Wei Cui
- Abstract要約: 本稿では,量子特徴抽出器の階層構造を学習するために,量子古典的畳み込みネットワークのための単純な教師なし手法を提案する。
提案手法の主な貢献は、量子回路アンサッツにおける量子特性の差を最大化するために、$K$-meansクラスタリングを使用することである。
- 参考スコア(独自算出の注目度): 5.609958919699706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combining the advantages of quantum computing and neural networks, quantum
neural networks (QNNs) have gained considerable attention recently. However,
because of the lack of quantum resource, it is costly to train QNNs. In this
work, we presented a simple unsupervised method for quantum-classical
convolutional networks to learn a hierarchy of quantum feature extractors. Each
level of the resulting feature extractors consist of multiple quanvolution
filters, followed by a pooling layer. The main contribution of the proposed
approach is to use the $K$-means clustering to maximize the difference of
quantum properties in quantum circuit ansatz. One experiment on the bearing
fault detection task shows the effectiveness of the proposed method.
- Abstract(参考訳): 量子コンピューティングとニューラルネットワークの利点を組み合わせることで、量子ニューラルネットワーク(QNN)は近年大きな注目を集めている。
しかし、量子リソースが不足しているため、QNNのトレーニングにはコストがかかる。
本研究では,量子特徴抽出器の階層構造を学習するために,量子古典的畳み込みネットワークのための単純な教師なし手法を提案する。
得られた特徴抽出器の各レベルは、複数のクオンボリューションフィルタからなり、次にプーリング層が続く。
提案手法の主な貢献は、量子回路アンサッツにおける量子特性の差を最大化するために、$K$-meansクラスタリングを使用することである。
軸受故障検出タスクの1つの実験は,提案手法の有効性を示した。
関連論文リスト
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
現代のAIシステムはニューラルネットワーク上に構築されることが多い。
古典的ニューラルネットワーク層を量子層に置き換える枠組みを提案する。
画像分類データセットの数値実験を行い、量子部品の体系的導入による性能変化を実証する。
論文 参考訳(メタデータ) (2024-09-26T07:01:29Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum Phase Recognition using Quantum Tensor Networks [0.0]
本稿では,教師付き学習タスクのためのテンソルネットワークにインスパイアされた浅部変分アンザツに基づく量子機械学習手法について検討する。
マルチスケールエンタングルメント再正規化アンサッツ (MERA) とツリーテンソルネットワーク (TTN) がパラメタライズド量子回路にインスパイアされた場合、テストセットの精度が$geq 98%に達する。
論文 参考訳(メタデータ) (2022-12-12T19:29:07Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
本稿では,複数の小型量子デバイスの量子資源を協調的に利用することにより,スケーラブルな量子ニューラルネットワーク(SQNN)を実現する手法を提案する。
SQNNシステムでは、いくつかの量子デバイスが量子特徴抽出器として使われ、入力インスタンスから並列に局所的な特徴を抽出し、量子デバイスは量子予測器として機能する。
論文 参考訳(メタデータ) (2022-08-04T20:35:03Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - A Derivative-free Method for Quantum Perceptron Training in
Multi-layered Neural Networks [2.962453125262748]
量子パーセプトロンに基づく多層ニューラルネットワークのグラデーションフリー・アプローチ
我々は測定可能な演算子を用いて、マルコフプロセスと整合した方法でネットワークの状態を定義する。
論文 参考訳(メタデータ) (2020-09-23T01:38:34Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。